Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 494-500, 2015
Molecular dynamics simulation of carbon molecular sieve preparation for air separation
Carbon deposition process on activated carbon (AC) in order to produce carbon molecular sieve (CMS) was simulated using molecular dynamics simulation. The proposed activated carbon for simulation includes micropores with different characteristic diameters and lengths. Three different temperatures of 773 K, 973 K, and 1,273 K were selected to investigate the optimum deposition temperature. Simulation results show that the carbon deposition process at 973 K creates the best adsorbent structure. While at lower temperature some micropore openings are blocked with carbon atoms, at higher temperature the number of deposited carbons on the micropores does not change significantly. Also, carbon deposition process confirms the pseudo-second-order kinetic model with an endothermic behavior. To evaluate the sieving property of adsorbent products, nitrogen and oxygen adsorption on the initial and final adsorbent products are examined. Results show that there is not any considerable difference between the equilibrium adsorption amounts of nitrogen and oxygen on the initial and final adsorbents especially at low pressure (P<10 atm). Although, adsorption kinetics curves of these gases change significantly after the carbon deposition process in comparison with the initial sample. These observations indicate that the final adsorbent has high selectivity towards oxygen compared with the nitrogen, so it can be called a carbon molecular sieve. All simulated results are in good agreement with experiments.
[References]
  1. Castilla CM, Carbon, 42, 83, 2004
  2. Demirbas A, J. Hazard. Mater., 167(1-3), 1, 2009
  3. Valente Nabais JM, Carrott PJM, Ribeiro Carrott MML, Padre-Eterno AM, Menendez JA, Dominguez A, Ortiz AL, Carbon, 44, 1158, 2006
  4. Adinata D, Daud WMAW, Aroua MK, Fuel Process. Technol., 88(6), 599, 2007
  5. Wang LP, Huang ZC, Zhang MY, T. Nonferr. Metal. Soc., 23, 530, 2013
  6. Kim BK, Kim YH, Yamamoto T, Korean J. Chem. Eng., 25(5), 1140, 2008
  7. Rungta M, Zhang C, Koros WJ, Xu LR, AIChE J., 59(9), 3475, 2013
  8. Rungta M, Xu L, Koros WJ, Carbon, 50, 1488, 2012
  9. Jarvelin H, Fair JR, Ind. Eng. Chem. Res., 32, 2201, 1993
  10. Grande CA, Silva VMTM, Gigola C, Rodrigues AE, Carbon, 41, 2533, 2003
  11. Tseng HH, Itta AK, J. Membr. Sci., 389, 223, 2012
  12. Itta AK, Tseng HH, Int. J. Hydrog. Energy, 36(14), 8645, 2011
  13. Mohamed AR, Mohammadi M, Darzi GN, Renew. Sust. Energy Rev., 14, 1591, 2010
  14. Moreira RFPM, Jose HJ, Rodrigues AE, Carbon, 39, 2269, 2001
  15. Reid CR, O'koye IP, Thomas KM, Langmuir, 14(9), 2415, 1998
  16. Mohammadi M, Najafpour GD, Mohamed AR, Chem. Ind. Chem. Eng. Q, 17, 525, 2011
  17. Prasetyo I, Do DD, Carbon, 37, 1909, 1999
  18. Kiyono M, Williams PJ, Koros WJ, J. Membr. Sci., 359(1-2), 2, 2010
  19. Do DD, Do HD, Colloids Surf., A, 252, 7, 2005
  20. Herrera LF, Do DD, Birkett GR, J. Colloid Interface Sci., 320(2), 415, 2008
  21. Okayama T, Yoneya J, Nitta T, Fluid Phase Equilib., 104, 305, 1995
  22. Georgakis M, Stavropoulos G, Sakellaropoulos GP, Micropor. Mesopor. Mater., 191, 67, 2014
  23. Liu YY, Wilcox J, Int. J. Coal Geol., 104, 83, 2012
  24. Fan C, Do DD, Nicholson D, Jagiello J, Kenvin J, Puzan M, Carbon, 52, 158, 2013
  25. Nasrabadi AT, Foroutan M, Comp. Mater. Sci., 61, 134, 2012
  26. Shi Y, J. Chem. Phys., 128, 2008
  27. Palmer JC, Llobet A, Yeon SH, Fischer JE, Shi Y, Gogotsi Y, Gubbins KE, Carbon, 48, 1116, 2010
  28. Palmer JC, Brennan JK, Hurley MM, Balboa A, Gubbins KE, Carbon, 47, 2904, 2009
  29. Fan LT, Argoti A, Walawender WP, Chou ST, Ind. Eng. Chem. Res., 44(7), 2343, 2005
  30. Ahmadpour A, Mahdyarfar M, Rashidi A, Abedinzadegan Abdi M, Eng. Fac. J-FUM, 18, 2007
  31. MacElroy JMD, Boyle MJ, Chem. Eng. J., 74(1-2), 85, 1999
  32. Wu ZQ, Liu ZP, Wang WC, Fan YQ, Xu NP, Chin. J. Chem. Eng., 16(5), 709, 2008
  33. Gauden PA, Terzyk AP, furmaniak S, Wloch J, Kowalczyk P, Zielinski W, J. Phys. Condens Matter, 26, 1, 2014
  34. Vela S, Larranaga FH, Carbon, 49, 4544, 2011
  35. Foroutann M, Nasrabadi AT, Physica E, 43, 261, 2010
  36. Hunenberger PH, Adv. Polym. Sci., 173, 105, 2005
  37. Hess B, Kutzner C, van der Spoel D, Lindahl E, J. Chem. Theory Comput., 4, 435, 2008
  38. Humphrey W, Dalke A, Schulten K, J. Mol. Graphics, 14, 33, 1996
  39. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF, J. Phys. Chem. A, 103(19), 3596, 1999
  40. van Gunsteren WF, Berendsen HJC, Angew. Chem. Int. Ed. Engl., 29, 992, 1990
  41. Cai Q, Biggs MJ, Seaton NA, Phys. Chem. Chem. Phys., 10, 2519, 2008
  42. Xu L, Sedigh G, Sahimi M, Tsotsis TT, Phys. Rev. Lett., 80, 3511, 1998
  43. Lagergren S, Kung Seven Veten Hand, 24, 1, 1898
  44. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  45. Vinodh R, Padmavathi R, Sangeetha D, Desalination, 267(2-3), 267, 2011
  46. Freundlich HMF, J. Phys. Chem., 57, 385, 1906
  47. Yang RT, Adsorbents fundamentals and application, Wiley, New Jersey, 2003