Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 413-423, 2015
Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production
We used sodium chlorite followed by sodium hydroxide as a two-stage pretreatment of cassava stem for removal of lignin and hemicellulose to obtain a substrate with high cellulose content prior to hydrolysis. Response surface methodology was applied to determine the optimum hydrolysis conditions of two-stage pretreated cassava stem. After pretreatment, the cellulose content of cassava stem increased from 42.10% to 86.45%, concomitant with decreases in lignin (87.59%) and hemicellulose (78.18%) content. Acid hydrolysis of two-stage pretreated cassava stem under optimum conditions allowed obtaining a hydrolyzate rich in reducing sugar, with a yields up to 67.37%. Conversely, inhibitors were detected at very low concentrations. The fermentation of the hydrolyzate resulted in an ethanol yield of 22.58 g/100 g substrate corresponding to a theoretical ethanol yield of 84.41%. The results demonstrate that two-stage pretreatment is effective for improving cellulose hydrolyzability, resulting in high fermentable sugar and low fermentation inhibitor concentrations.
[References]
  1. Cardona CA, Sanchez OJ, Bioresour. Technol., 98(12), 2415, 2007
  2. Papong S, Malakul P, Bioresour. Technol., 101, 112, 2010
  3. Kaewboonsong W, Chira-adisai P, Biomass, Q Print Management, Bangkok, 2008
  4. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119, 2011
  5. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  6. Zhang MJ, Wang F, Su RX, Qi W, He ZM, Bioresour. Technol., 101(13), 4959, 2010
  7. Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S, Bioresour. Technol., 103(1), 425, 2012
  8. Brigida AIS, Calado VMA, Goncalves LRB, Coelho MAZ, Carbohydr. Polym., 79, 832, 2010
  9. Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE, Bioresour. Technol., 130, 372, 2013
  10. Zhang QZ, Cai WM, Biomass Bioenerg., 32(12), 1130, 2008
  11. Georing HK, Van Soest PJ, Forage fiber analyses (apparatus, reagent, procedures, and some applications), Agriculture Handbook No. 379, Agriculture Research Service-United States Department of Agricultural, USDA, Washington, DC, USA, 1970
  12. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, National Renewable Energy Laboratory Technical Report NREL/TP-510-42622, 2008
  13. Miller GL, Anal. Chem., 31, 426, 1959
  14. Thongpoothorn W, Chanthai S, Sriuttha M, Saosang K, Ruangviriyachai C, Ind. Crop. Prod., 36, 437, 2012
  15. Akaracharanya A, Kesornsit J, Leepipatpiboon N, Srinorakutara T, Kitpreechavanich V, Ann. Microbiol., 61, 431, 2010
  16. Hubbell CA, Ragauskas AJ, Bioresour. Technol., 101(19), 7410, 2010
  17. Liu W, Yuan Z, Mao C, Hou Q, Li K, Bioresources., 6, 3469, 2011
  18. Qi BK, Chen XR, Shen F, Su Y, Wan YH, Ind. Eng. Chem. Res., 48(15), 7346, 2009
  19. Liao W, Wem Z, Hurley S, Liu Y, Liu Y, Liu C, Chen S, Appl. Biochem. Biotechnol., 124, 1017, 2005
  20. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC, Enzyme Microb. Technol., 43, 124, 2007
  21. Zhang B, Chen Y, Wei X, Li M, Wang M, Int. J. Food Eng., 6, 1, 2010
  22. Cao GL, Ren NQ, Wang AJ, Lee DJ, Guo WQ, Liu BF, Feng YJ, Zhao QL, Int. J. Hydrog. Energy, 34(17), 7182, 2009
  23. Diler EA, Ipek R, Mat. Sci. Eng. A., 548, 43, 2012
  24. Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25, 2000
  25. Demirbas A, Energy Sources, 30, 27, 2008
  26. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G, Appl. Microbiol. Biotechnol., 82(4), 625, 2009
  27. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G, Appl. Microbiol. Biotechnol., 53(6), 701, 2000
  28. Karimi K, Brandberg T, Edebo L, Taherzadeh MJ, Biotechnol. Lett., 27(18), 1395, 2005
  29. Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 61(2), 143, 2004
  30. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L, Bioresour. Technol., 101, 1036, 2009
  31. Carter B, Squillace P, Gilcrease PC, Menkhaus TJ, Biotechnol. Bioeng., 108, 2053, 2012
  32. Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM, Biochem. Eng. J., 38, 105, 2008
  33. Dhamole PB, Wang B, Fang H, J. Chem. Technol. Biotechnol., 88, 1744, 2012
  34. Nigam JN, J. Biotechnol., 87, 17, 2001
  35. Roberto IC, Mussatto SI, Rodrigues RCLB, Ind. Crop. Prod., 17, 171, 2003
  36. Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 74(1), 78, 2006
  37. Lopez Y, Garcia A, Karimi K, Taherzadeh MJ, Martin C, Bioresources, 5, 2268, 2012
  38. Diaz MJ, Rui E, Romero I, Cara C, Moya M, Castro E, World J. Microbiol. Biotechnol., 25, 891, 2009
  39. Cai BY, Ge JP, Ling HZ, Cheng KK, Ping WX, Biomass Bioenerg., 36, 250, 2012
  40. Xiros C, Topakas E, Katapodis P, Christakopoulos P, Ind. Crop. Prod., 28, 213, 2008
  41. Fonseca BG, Puentes JG, Mateo S, Sanchez S, Moya AJ, Roberto IC, J. Agric. Food Chem., 61, 9658, 2013
  42. Yang Y, Sharma-shivappa RR, Burns JC, Cheng J, Energy Fuels, 23, 5626, 2009
  43. Lin CW, Tranb DT, Lai CY, Yet-Pole I, Wu CH, Biomass Bioenerg., 34(12), 1922, 2010
  44. Velmurugan R, Muthukumar K, Bioresour. Technol., 102(14), 7119, 2011
  45. Singh A, Bishnoi NR, Ind. Crop. Prod., 44, 283, 2013