Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 373-382, 2015
Capture of CO2 from coal using chemical-looping combustion: Process simulation
Coal direct chemical-looping combustion (CLC) and coal gasification CLC processes are the two basic approaches for the application of the CLC technology with coal. Two different combined cycles with the overall thermal input of 1,000MW (LHV) were proposed and simulated, respectively, with NiO/NiAl2O4 as an oxygen carrier using the ASPEN software. The oxygen carrier circulation ratio in two CLC processes was calculated, and the influence of the CLC process parameters on the system performance such as air reactor temperature and the turbine inlet supplementary firing temperature was investigated. Results found were that the circulation ratio of the oxygen carrier in the coal gasification CLC process is smaller than that in the coal direct CLC process. In the coal direct CLC combined system, the system efficiency is 49.59% with the CO2 capture efficiency of almost 100%, assuming the air reactor temperature at 1,200 oC and the fuel reactor temperature at 900 oC. As a comparison, the system efficiency of coal gasification CLC combined system is 40.53% with the CO2 capture efficiency of 85.2% when the turbine inlet temperature is at 1,350 oC. Increasing the supplementary firing rate or decreasing the air reactor temperature can increase the system efficiency, but these will reduce the CO2 capture efficiency.
[References]
  1. Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Trends in atmospheric carbon dioxide, http://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed April 1, 2014).
  2. Socolow RH, Sci. Am., 293, 49, 2005
  3. Lyngfelt A, Leckner B, Mattisson T, Chem. Eng. Sci., 56(10), 3101, 2001
  4. Benson SM, Surles T, Proc. IEEE, 94, 1795, 2006
  5. KT, Davison J, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 2004
  6. Steeneveldt R, Berger B, Torp TA, Chem. Eng. Res. Des., 84(A9), 739, 2006
  7. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Prog. Energy Combust., 38, 215, 2012
  8. Leion H, Mattisson T, Lyngfelt A, Fuel, 86(12-13), 1947, 2007
  9. Mattisson T, Lyngfelt A, Leion H, Int. J. Greenh. Gas Control, 3, 11, 2009
  10. Leion H, Mattisson T, Lyngfelt A, Int. J. Greenh. Gas Control, 2, 180, 2008
  11. Scott SA, Dennis JS, Hayhurst AN, Brown T, AIChE J., 52(9), 3325, 2006
  12. Abad A, Mattisson T, Lyngfelt A, Johansson M, Fuel, 86(7-8), 1021, 2007
  13. Abad A, Garcia-Labiano F, de Diego LF, Gayan P, Adanez J, Energy Fuels, 21(4), 1843, 2007
  14. Mattisson T, Leion H, Lyngfelt A, Fuel, 88(4), 683, 2009
  15. Leion H, Mattisson T, Lyngfelt A, Energy Procedia, 1, 447, 2009
  16. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Fuel, 90(3), 941, 2011
  17. Ryden M, Lyngfelt A, Mattisson T, Int. J. Greenh. Gas Control, 5, 356, 2011
  18. Ryden M, Lyngfelt A, Mattisson T, 10th International Conference on Greenhouse Gas Control Technologies, Elsevier Science Bv, Amsterdam, 341, 2011
  19. Azimi G, Leion H, Mattisson T, Lyngfelt A, 10th International Conference on Greenhouse Gas Control Technologies, Elsevier Science Bv, Amsterdam, 370, 2011
  20. Anheden M, Svedberg G, Energy Conv. Manag., 39(16-18), 1967, 1998
  21. Brandvoll O, Bolland O, J. Eng. Gas Turb Power, 126, 316, 2004
  22. Marx K, Bolhar-Nordenkampf J, Proll T, Hofbauer H, Int. J. Greenh. Gas Control, 5, 1199, 2011
  23. Xiang W, Wang S, Di TT, Energy Fuels, 22(2), 961, 2008
  24. Xiang WG, Chen SY, Xue ZP, Sun XY, Int. J. Hydrog. Energy, 35(16), 8580, 2010
  25. Gnanapragasam NV, Reddy BV, Rosen MA, Int. J. Hydrog. Energy, 34(6), 2606, 2009
  26. Li FX, Zeng LA, Fan LS, Fuel, 89(12), 3773, 2010
  27. Minchener AJ, Fuel, 84(17), 2222, 2005
  28. Kuusik R, Trikkel A, Lyngfelt A, Mattisson T, Energy Procedia, 1, 3885, 2009
  29. Song KS, Seo YS, Yoon HK, Cho SJ, Korean J. Chem. Eng., 20(3), 471, 2003
  30. Baek JI, Ryu CK, Eom TH, Lee JB, Jeon WS, Yi J, Korean J. Chem. Eng., 28(11), 2211, 2011
  31. Johansson E, Mattisson T, Lyngfelt A, Thunman H, Chem. Eng. Res. Des., 84(A9), 819, 2006
  32. Kolbitsch P, Proll T, Bolhar-Nordenkampf J, Hofbauer H, Int. J. Greenh. Gas Control, 1, 1465, 2009
  33. Dueso C, Garcia-Labiano F, Adanez J, de Diego LF, Gayan P, Abad A, Fuel, 88(12), 2357, 2009
  34. Ishida M, Jin HG, Okamoto T, Energy Fuels, 10(4), 958, 1996
  35. Siriwardane R, Poston J, Chaudhari K, Zinn A, Simonyi T, Robinson C, Energy Fuels, 21(3), 1582, 2007
  36. Trimm D, Appl. Catal., 7, 249, 1983
  37. Herzog HJ, Environ. Sci. Technol., 35, 148, 2001
  38. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433, 2008
  39. Jerndal E, Mattisson T, Lyngfelt A, Chem. Eng. Res. Des., 84(A9), 795, 2006
  40. Wang B, Yan R, Lee DH, Liang DT, Zheng Y, Zhao H, Zheng C, Energy Fuels, 22(2), 1012, 2008
  41. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178, 2008
  42. Son SR, Kim SD, Ind. Eng. Chem. Res., 45(8), 2689, 2006
  43. Berguerand N, Lyngfelt A, Fuel, 87(12), 2713, 2008
  44. Luo M, Wang SZ, Wang LF, Lv MM, Qian LL, Fu H, Fuel Process. Technol., 110, 258, 2013
  45. Yang JB, Cai NS, Li ZS, Energy Fuels, 22(4), 2570, 2008
  46. Cao Y, Pan WP, Energy Fuels, 20(5), 1836, 2006