Issue
Korean Journal of Chemical Engineering,
Vol.32, No.2, 216-221, 2015
Effect of bed configuration of immobilized biocatalysts on penicillin G hydrolysis efficiency
The external and internal mass transfer of Penicillin G in the process of its enzymatic hydrolysis to 6-Aminopenicillanic acid under competitive and non-competitive inhibitions have been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor, both with Penicillin amidase immobilized in Eupergit C. The Penicillin G mass transfer and hydrolysis enzymatic rates have been analyzed by means of the ratios’ values between the oxygen mass transfer coefficients, effectiveness factors, external mass flows and Penicillin G concentrations at the biocatalyst particle surface for the considered bioreactors. The results indicated that the bioreactor with mobile bed is more efficient especially for biocatalyst particles with diameter under 1.5 mm. For larger particles the performances of the two bioreactors become similar. Moreover, taking into consideration the external mass flow of Penicillin G and the number of enzymatic hydrolysis cycles, the basket bioreactor is recommended. The mathematical equations proposed are in good concordance with the experimental results, the average deviations varying from ±4.11% for the bioreactor with mobile bed of immobilized Penicillin amidase to ±5.03% for the basket bioreactor.
[References]
  1. Bianchi D, Golini P, Bortolo R, Cesti P, Enzyme Microb. Technol., 18(8), 592, 1996
  2. Katchalski-Katzir K, Kraemer DM, J. Mol. Catal. B: Enzym., 10, 157, 2000
  3. Knezevi Z, Milosavi N, Bezbradica D, Jakovljevi Z, Prodanovi R, Biochem. Eng. J., 30, 269, 2006
  4. Lupasteanu AM, Galaction AI, Cascaval D, Rom. Biotechnol. Lett., 12, 3131, 2007
  5. Galaction AI, Matran RM, Turnea M, Blaga AC, Cascaval D, Chem. Eng. Commun., DOI: 10.1080/00986445.2013.819801., 2014
  6. Matran RM, Galaction AI, Blaga AC, Turnea M, Cascaval D, Environ. Eng. Manag. J., 12, 2261, 2013
  7. Gamarra A, Cuevas C, Lescano G, J. Ferm. Technol., 64, 25, 1986
  8. Kolagerakis N, Behie LA, Bioprocess Biosyst. Eng., 17, 151, 1996
  9. Pitault I, Fongarland P, Koepke D, Mitrovic M, Ronze D, Forissier M, Chem. Eng. Sci., 60, 6240, 2007
  10. Sheelu G, Kavitha G, Fadnavis NW, J. Am. Oil. Chem. Soc., 85, 739, 2008
  11. Teshima H, Ohashi Y, J. Chem. Eng. Jpn., 10, 70, 1977
  12. Warna J, Ronnholm M, Salmi T, Keikko K, Computer-Aided Chem. Eng., 10, 1009, 2002
  13. Cascaval D, Turnea M, Galaction AI, Blaga AC, Biochem. Eng. J., 69, 113, 2012
  14. Galaction AI, Cascaval D, Turnea M, Folescu E, Bioprocess Biosyst. Eng., 27, 263, 2005
  15. Galaction AI, Lupasteanu AM, Cascaval D, Environ. Eng. Manag. J., 6, 101, 2007
  16. Torres-Bacete J, Arroyo M, Torres-Guzman R, de la Mata I, Castillon MP, Acebal C, Biotechnol. Lett., 22(12), 1011, 2000
  17. Kumar R, Suresh AK, Shankar HS, J. Chem. Technol. Biotechnol., 66(3), 243, 1996
  18. Warburton D, Dunnil P, Lilly MD, Biotechnol. Bioeng., 15, 13, 1973
  19. Illanes A, Enzyme biocatalysis: Principles and applications, Springer, New York, 2008
  20. Kumar R, Suresh AK, Shankar HS, J. Chem. Technol. Biotechnol., 66(3), 243, 1996
  21. Perry RH, Chilton CH, Chemical Engineers’ Handbook, McGraw-Hill, New York, 1973