Issue
Korean Journal of Chemical Engineering,
Vol.31, No.10, 1859-1864, 2014
In-situ synthesis of hydrotalcite and its application in separation of simulated radionuclide Eu(III)
The simulated radionuclide Eu(III) was separated effectively by using the in-situ synthesis of hydrotalcite. The optimal conditions of pH, Mg/(Eu+Al) molar ratio, and initial Eu(III) concentration for separating Eu(III) and achieving a single hydrotalcite phase were investigated systematically and determined to be 10, 3.0, and 600 mg L-1, respectively. Under the optimal separation conditions, the removal percentage of Eu(III) reached 99.8%. The characterization results suggested that Eu(III) was incorporated into the crystal lattice of hydrotalcite completely and fully immobilized in the structure of spinel by calcining, and the morphology of the synthetic hydrotalcite containing Eu(III) was in hexagonal platelet-like sheet.
[References]
  1. Kedari CS, Pandit SS, Gandhi PM, J. Membr. Sci., 430, 188, 2013
  2. Zhang AY, Kuraoka E, Kumagai M, Sep. Purif. Technol., 50(1), 35, 2006
  3. Krishna MVB, Rao SV, Arunachalam J, Murali MS, Kumar S, Manchanda VK, Sep. Purif. Technol., 38(2), 149, 2004
  4. Rana D, Matsuura T, Kassim MA, Ismail AF, Desalination, 321, 77, 2013
  5. Li SW, Chen J, Wang JC, J. Radioanal. Nucl. Chem., 292(2), 697, 2012
  6. Mahmoud MR, Someda HH, J. Radioanal. Nucl. Chem., 292(3), 1391, 2012
  7. Abe H, Satoh A, Nishida K, Abe E, Ncaka T, Imai M, Kitazawa H, J. Solid State Chem., 179(5), 1521, 2006
  8. Potdar HS, Vijayanand S, Mohaideen KK, Patil KR, Joy PA, Madhavan RR, Kutty KVG, Ambashta RD, Wattal PK, Mater. Chem. Phys., 123(2-3), 695, 2010
  9. Lee SH, Yoo JH, Kim JH, Korean J. Chem. Eng., 21(5), 1038, 2004
  10. Dakshinamoorthy A, Dhami PS, Naik PW, Dudwadkar NL, Munshi SK, Dey PK, Venugopal V, Desalination, 232(1-3), 26, 2008
  11. Bai FF, Ye G, Chen GJ, Wei JC, Wang JC, Chen J, React. Funct. Polym., 73(1), 228, 2013
  12. Tan SH, Chen XG, Ye Y, Sun J, Dai LQ, Ding Q, J. Hazard. Mater., 179(1-3), 559, 2010
  13. Yang YM, Zhao XF, Zhu Y, Zhang FZ, Chem. Mater., 24(1), 81, 2012
  14. Pavel OD, Tichit D, Marcu IC, Appl. Clay Sci., 61, 52, 2012
  15. Salomao R, Milena LM, Wakamatsu MH, Pandolfelli VC, Ceram. Int., 37(8), 3063, 2011
  16. Stumpf T, Curtius H, Walther C, Dardenne K, Ufer K, Fanghanel T, Environ. Sci. Technol., 41, 3186, 2007
  17. Fan XM, Yang ZH, Xie X, Long W, Wang RJ, Hou ZL, J. Power Sources, 241, 404, 2013
  18. Das J, Das D, Parida KM, J. Colloid Interface Sci., 301(2), 569, 2006
  19. Douglas GB, Wendling LA, Pleysier R, Trefry MG, Mine Water Environ., 29(2), 108, 2010
  20. Douglas G, Shackleton M, Woods P, Appl. Geochem., 42, 27, 2014
  21. Ma W, Zhao NN, Yang G, Tian LY, Wang R, Desalination, 268(1-3), 20, 2011
  22. Ringwood A, Kesson S, Ware N, Hibberson W, Major A, Nature, 278, 2019, 1979
  23. Choudary BM, Jaya VS, Reddy BR, Kantam ML, Rao MM, Madhavendra SS, Chem. Mater., 17(10), 2740, 2005
  24. Sharma SK, Kushwaha PK, Srivastava VK, Bhatt SD, Jasra RV, Ind. Eng. Chem. Res., 46(14), 4856, 2007
  25. Yan K, Xie XM, Li JP, Wang XL, Wang ZZ, J. Nat. Gas Chem., 16(4), 371, 2007
  26. Sharma U, Tyagi B, Jasra RV, Ind. Eng. Chem. Res., 47(23), 9588, 2008
  27. Serrano-Lotina A, Rodriguez L, Munoz G, Daza L, J. Power Sources, 196(9), 4404, 2011
  28. Zhao D, Wang Y, Xuan H, Chen Y, Cao T, J. Radioanal. Nucl. Chem., 295, 1251, 2013
  29. Zhang PL, Sago S, Yamaguchi T, Anilkumar GM, J. Power Sources, 230, 225, 2013
  30. Feng YJ, Li DQ, Wang Y, Evans DG, Duan X, Polymer Degradation and Stability, 91, 789, 2006
  31. Ogawa M, Kaiho H, Langmuir, 18(11), 4240, 2002