Issue
Korean Journal of Chemical Engineering,
Vol.31, No.10, 1839-1844, 2014
Optimization of medium components using orthogonal arrays for γ-Linolenic acid production by Spirulina platensis
This work describes the medium optimization of γ-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L^(-1)), NaNO3 (13.5 mg L^(-1)) and MgSO4ㆍ7H2O (11.85 mg L^(-1)) proved to be the best components for GLA production. The optimal pH for GLA production by the alga was 9.2. Based on the delta values, NaHCO3 showed the greatest effect on the GLA production of the various factors tested, followed in decreasing order by MgSO4ㆍ7H2O, NaNO3 and K2SO4. The maximum GLA yield obtained was 19.2 mgL^(-1) in the presence of optimum concentrations of NaHCO3 (20 g L^(-1)), NaNO3 (3 g L^(-1)), MgSO4ㆍ7H2O (0.5 g L^(-1)) and K2SO4 (1.5 g L^(-1)). Because of the slow growth rate of the algae, the practice of robust orthogonal array methods during the optimization of medium components can result in the production of an optimal biomass and a higher GLA yield for nutraceutical applications.
[References]
  1. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN, Nutrition, 19, 305, 2003
  2. Zurier RB, Rossetti RG, Jacobson EW, Demarco DM, Liu NY, Emming ETJ, White BM, Laposata M, Arthritis Rheum., 39, 1808, 1996
  3. Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend TL, Proc. Soc. Exp. Biol. Med., 218, 234, 1998
  4. Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, Henderson LM, Bissessar EA, Watkins PJ, Sampson M, Diabetes Care, 16, 8, 1993
  5. Simon D, Eng PA, Borelli S, Kagi R, Zimmermann C, Zahner C, Drewe J, Hess L, Ferrari G, Lautenschlager S, Wuthrich B, Schmid-Grendelmeier P, Adv. Ther., 1, 1, 2014
  6. Hirano M, Mori H, Miura Y, Matsunaga N, Nakamura N, Matsunaga T, Appl. Biochem. Biotechnol., 24, 183, 1990
  7. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, J. Appl. Phycol., 5, 109, 1993
  8. Cohen Z, Vonshak A, Richmond A, Phytochemistry, 26, 2255, 1987
  9. Mahajan G, Kamat M, Appl. Microbiol. Biotechnol., 43(3), 466, 1995
  10. Carvalho JC, Bezerra RP, Matsudo MC, Sato S, Advanced Biofuels and Bioproducts, Springer, New York, 2013
  11. Costa JAV, Cozza KL, Oliveira L, Magagnin G, World J. Microb. Biot., 17, 439, 2001
  12. Ayachi S, El Abed A, Dhifi W, Marzouk B, Ital. J. Biochem., 56, 166, 2007
  13. Danesi EDG, Rangel-Yagui CDO, de Carvalho JCM, Sato S, Biomass Bioenerg., 23(4), 261, 2002
  14. Evans HJ, Sorger GJ, Annu. Rev. Plant Physiol., 17, 47, 1966
  15. Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW, Process. Biochem., 38, 1025, 2003
  16. Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M, J. Hazard. Mater., 143(1-2), 214, 2007
  17. De BK, Chaudhury S, Bhattacharyya DK, J. Am. Oil Chem. Soc., 76, 153, 1999
  18. Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A, Biomass, 2, 175, 1982
  19. Fagiri YMA, Salleh A, El-Nagerabi SAF, Afr. J. Biotechnol., 12, 5458, 2013
  20. Kim K, Hoh D, Ji Y, Do H, Lee B, Holzapfel W, Biomass Bioenerg., 49, 181, 2013
  21. Ogbonda KH, Aminigo RE, Abu GO, Bioresour. Technol., 98(11), 2207, 2007
  22. Moriwaki H, Yamamoto H, Appl. Microbiol. Biotechnol., 97(1), 1, 2013
  23. Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T, J. Appl. Phycol., 1, 1, 2013
  24. Shimamatsu H, Hydrobiologia, 512, 39, 2004
  25. Dwivedi A, Maheshwari R, Syedy M, Int. J. Rec. Biotechnol., 1, 17, 2013
  26. Kim EK, Choi GG, Kim HS, Ahn CY, Oh HM, J. Appl. Phycol., 24, 743, 2012