Issue
Korean Journal of Chemical Engineering,
Vol.31, No.10, 1786-1791, 2014
Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid
An efficient method for converting cellulose into 5-hydroxymethylfurfural (5-HMF) using an inexpensive ionic liquid tetrabutylammonium chloride (TBAC) and relatively low-toxicity catalyst of chromium (III) trichloride (CrCl3·6H2O) was developed. The effects of hydrochloric acid loading, catalyst dosage, reaction temperature and time on the yield of 5-HMF were surveyed to achieve optimal reaction conditions. A 5-HMF yield of 43.7% was obtained within 90 min at 140 ℃using oil-bath heating. Glucose and starch were also investigated as feedstock to produce 5- HMF in TBAC/CrCl3·6H2O system, in which the 5-HMF yield was considerable. After 5-HMF was extracted, TBAC/CrCl3·6H2O could be used for several runs.
[References]
  1. Morales-delaRosa S, Campos-Martin JM, Fierro JLG, Chem. Eng. J., 181, 538, 2012
  2. Dutta S, RSC Adv., 33, 12575, 2012
  3. Guo XC, Cao Q, Jiang YJ, Guan J, Wang XY, Mu XD, Carbohydr. Res., 351, 35, 2012
  4. Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627, 2006
  5. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930, 2010
  6. Hansen TS, Woodley JM, Riisager A, Carbohydr. Res., 344, 2568, 2009
  7. Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117, 2009
  8. Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH, Cellulose, 17, 587, 2010
  9. Zhou LL, Liang RJ, Ma ZW, Wu TH, Wu Y, Bioresour. Technol., 129, 450, 2013
  10. Tan MX, Zhao L, Zhang YG, Biomass Bioenerg., 35(3), 1367, 2011
  11. Yang FL, Liu QS, Bai XF, Du YG, Bioresour. Technol., 102(3), 3424, 2011
  12. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342, 2007
  13. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883, 2000
  14. Zhang ZH, Zhao ZBK, Bioresour. Technol., 101(3), 1111, 2010
  15. Rogers RD, Seddon KR, Science, 302, 792, 2003
  16. Wang XJ, Li HQ, Cao Y, Tang Q, Bioresour. Technol., 102(17), 7959, 2011
  17. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974, 2002
  18. Liu B, Zhang ZH, Zhao ZK, Chem. Eng. J., 215, 517, 2013
  19. Hu L, Sun Y, Lin L, Ind. Eng. Chem. Res., 51(3), 1099, 2012
  20. Wang P, Yu HB, Zhan SH, Wang SQ, Bioresour. Technol., 102(5), 4179, 2011
  21. Li CZ, Zhao ZK, Wang AQ, Zheng MY, Zhang T, Carbohydr. Res., 345, 1846, 2010
  22. Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597, 2007
  23. Cao Q, Guo XC, Yao SX, Guan J, Wang XY, Mu XD, Zhang DK, Carbohydr. Res., 346, 956, 2011
  24. Hu L, Sun Y, Lin L, Liu SJ, J. Taiwan Inst. Chem. E., 43, 718, 2012
  25. Zhang YM, Pidko EA, Hensen EJM, Chem. Eur. J., 17, 5281, 2011
  26. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342, 2007
  27. Li CZ, Zhao ZK, Adv. Synth. Catal., 349, 1847, 2007
  28. Horvat J, Klai B, Metelko B, Sunjic V, Tetrahedron Lett., 26, 2111, 1985
  29. Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G, Appl. Catal. A: Gen., 145(1-2), 211, 1996
  30. Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A, Chem. Eur. J., 17, 1456, 2011
  31. Qi XH, Watanabe M, Aida TM, Smith RL, Catal. Commun., 9, 2244, 2008
  32. Amarasekara AS, Ebede CC, Bioresour. Technol., 100(21), 5301, 2009
  33. Fan CY, Guan HY, Zhang H, Wang JH, Wang ST, Wang XH, Biomass Bioenerg., 35(7), 2659, 2011
  34. Qi XH, Watanabe M, Aida TM, Smith RL, Green Chem., 11, 1327, 2009
  35. Qi XH, Watanabe M, Aida TM, Smith RL, ChemSusChem, 3, 1071, 2010