Issue
Korean Journal of Chemical Engineering,
Vol.31, No.9, 1695-1706, 2014
The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology
We studied the capability of electrocentrifuge-spinning (ECS) method for generating highly aligned nanofiber. First, the degree of nanofiber alignment (DNA) produced by ECS was compared with that of rotating drum (RD) method and ECS superiority was demonstrated. Then central composite design (CCD) and response surface methodology (RSM) was used for optimization of operating conditions. The critical factors selected for the examination were voltage, polymer concentration, collector diameter and spinneret rotational speed. To design the required experiments at the settings of independent parameters, RSM was applied. A total of 30 experiments were accomplished towards the construction of a quadratic model for target variable. Using this quadratic model, the influence of aforementioned variables was discussed on DNA. The best operating condition for attaining the maximum value of DNA was the applied voltage of 20.19 kV, polymer concentration of 17.44wt%, collector diameter of 40.76 cm, and rotational speed of 2680.10 rpm.
[References]
  1. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223, 2003
  2. Bhardwaj N, Kundu SC, Biotechnol. Adv., 28, 325, 2010
  3. Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 28(1), 114, 2011
  4. Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 25(4), 923, 2008
  5. Kanafchian M, Valizadeh M, Haghi AK, Korean J. Chem. Eng., 28(2), 428, 2011
  6. Reneker DH, Yarin AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4531, 2000
  7. Yarin AL, Koombhongse S, Reneker DH, J. Appl. Phys., 89, 3018, 2001
  8. Wu H, Lin D, Zhang R, Pan W, J. Am. Ceram. Soc., 91(2), 656, 2008
  9. Pan CF, Wu H, Wang C, Wang B, Zhang L, Cheng ZD, Hu P, Pan W, Zhou ZY, Yang X, Zhu J, Adv. Mater., 20(9), 1644, 2008
  10. Lu X, Zhang W, Wang C, Wen TC, Wei Y, Prog. Polym. Sci., 36, 671, 2011
  11. Chew SY, Mi R, Hoke A, Leong KW, Biomaterials, 29, 653, 2008
  12. Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ, Biomaterials, 28, 1967, 2007
  13. Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG, Acta Biomater., 7, 203, 2011
  14. Xu CY, Inai R, Kotaki M, Ramakrishna S, Biomaterials, 25, 877, 2004
  15. Gu SY, Wu QL, Ren J, Vancso GJ, Macromol. Rapid Commun., 26(9), 716, 2005
  16. Wang XF, Zhang K, Zhu MF, Hsiao BJS, Chu BJ, Macromol. Rapid Commun., 29(10), 826, 2008
  17. Mathew G, Hong JP, Rhee JM, Leo DJ, Nah C, J. Appl. Polym. Sci., 101(3), 2017, 2006
  18. Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3(2), 232, 2002
  19. Boland ED, Wnek GE, Simpson DG, Palowski KJ, Bowlin GL, J. Macromol. Sci., Pure Appl. Chem. A, 38, 1231, 2001
  20. Theron A, Zussman E, Yarin AL, Nanotechnology, 12, 384, 2001
  21. Li D, Wang Y, Xia Y, Nano Lett., 3, 1167, 2003
  22. Jalili R, Morshed M, Abdolkarim S, Ravandi H, J. Appl. Polym. Sci., 101(6), 4350, 2006
  23. Jalili R, Hosseini-Ravandi SA, Morshed M, Iranian J. Polym. Sci. Technol., 4, 241, 2006
  24. Afifi AM, Nakajima H, Yamane H, Kimura Y, Nakano S, Macromol. Mater. Eng., 294, 658, 2009
  25. Bazbouz MB, Stylios GK, J. Appl. Polym. Sci., 107(5), 3023, 2008
  26. Carnell LS, Siochi EJ, Holloway NM, Stephens RM, Rhim C, Niklason LE, Clark RL, Macromolecules, 41(14), 5345, 2008
  27. Dabirian F, Ravandi SAH, Pishevar AR, Curr. Nanosci., 6, 545, 2010
  28. Dabirian F, Ravandi SAH, Pishevar AR, Abuzade RA, J. Electrostat., 69, 540, 2011
  29. Kwak J, Int. J. Mach. Tool Manuf., 45, 327, 2005
  30. Kim D, Song Y, Park Y, Korean J. Chem. Eng., 30(3), 664, 2013
  31. Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 27(1), 340, 2010
  32. Rahmanian B, Pakizeh M, Maskooki A, Korean J. Chem. Eng., 29(6), 804, 2012
  33. Kincl M, Turk S, Vrecer F, Int. J. Pharm., 291, 39, 2005
  34. Gunaraj V, Murugan N, J. Mater. Process. Technol., 88, 266, 1999
  35. Hosseini Ravandi SA, Toriumi K, Text. Res. J., 65, 676, 1995
  36. Montgomery DC, Design and analysis of experiments, 6th Ed., Wiley, Singapore, 2001
  37. Box GEP, Hunter JS, Ann. Math. Stat., 28, 195, 1957
  38. Obeng D, Morrell S, Napier T, Int. J. Miner. Process., 769, 181, 2005
  39. Zhang C, Yuan X, Wu L, Han Y, Sheng J, Eur. Polym. J., 41, 423, 2005
  40. Demir MM, Yilgor I, Yilgor E, Erman B, Polymer, 43(11), 3303, 2002
  41. Reneker D, Chun L, Nanotechnology, 7, 216, 1996
  42. Haghi A, Akbari M, Phys. Status. Solidi., 204, 1830, 2007
  43. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH, Polymer, 46(14), 5094, 2005
  44. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261, 2001
  45. Liu HQ, Hsieh YL, J. Polym. Sci. B: Polym. Phys., 40(18), 2119, 2002
  46. McKee MG, Wilkes GL, Colby RH, Long TE, Macromolecules, 37(5), 1760, 2004
  47. Ryu Y, Kim H, Lee K, Park H, Lee D, Eur. Polym. J., 39, 1883, 2003