Issue
Korean Journal of Chemical Engineering,
Vol.31, No.9, 1681-1694, 2014
Rheological characterization of ferrous sulfate-containing water-in-oil-in-water (W1/O/W2) double emulsions
With use of response surface methodology (RSM), the W1/O/W2 emulsions containing ferrous sulfate as the inner phase were optimized in terms of stability (ES) and apparent viscosity (μapp). Curvature display of the responses around their optimal settings was appropriately described using the quadratic polynomial regression model. The non-Newtonian behavior of the test W1/O/W2 emulsions was characterized using the power-law model and change from non-Newtonian to Newtonian (n≒1) was seen in the case of W1/O :W2 ratio equal 20 : 80 when the level of Tween-80 was 1 v%. Results of the size distribution pattern showed 60% of the particles were less than 5 μm. Rheological properties of the test W1/O/W2 emulsions as the viscoelastic liquids were analyzed and the results of oscillatory experiments considering shear stress and frequency dependency of G' and G'' moduli were discussed in terms of the internal microstructure of the emulsions.
[References]
  1. McClements DJ, Food emulsions: Principles, practices, and techniques, CRC Press, Boca Raton Fl, 2005
  2. Nazzaro F, Orlando P, Fratianni F, Curr. Opin. Biotechnol., 23, 182, 2012
  3. Colmenero FJ, Food Res. Int., 52, 64, 2013
  4. Anal AK, Singh H, Trends Food Sci. Technol., 18, 240, 2007
  5. Garti N, Lebensm-Wiss Technol., 30, 222, 1997
  6. Salager JL, Anton RE, Sabatini DA, Harwell JH, Acosta EJ, Tolosa LI, J. Surfactants Deterg., 8, 3, 2005
  7. Schmidt T, Dobler D, Guldan A, Paulus N, Runkel F, Colloids Surf., A., 372, 48, 2010
  8. Magdassi S, Frenkel M, Garti N, Kasan R, J. Colloid Interface Sci., 97(2), 374, 1984
  9. Derkatch SR, Levachov SM, Kuhkushkina AN, Novosyolova NV, Kharlov AE, Matveenko VN, Colloids Surf., A., 298, 225, 2007
  10. Dickinson E, Hong ST, Colloids Surf., A., 127, 1, 1997
  11. Binks BP, Lumsdon SO, Langmuir, 17(15), 4540, 2001
  12. Inoue M, Hashizaki K, Taguchi H, Saito Y, Chem. Pharm. Bull., 56(5), 668, 2008
  13. Davarpanah L, Vahabzadeh F, Starch/Starke, 64, 898, 2012
  14. Davarpanah L, Vahabzadeh F, Dermanaki A, Oil Gas Sci. Technol., DOI:10.2516/ogst/2012066., 2013
  15. Terrisse I, Seiller M, Rabaron A, Grossiord JL, nt. J. Cosmetic. Sci., 15, 53, 1993
  16. Tadros THF, Colloids Surf., A., 91, 39, 1994
  17. Murillo-Martinez MM, Pedroza-Islas R, Lobato-Calleros C, Martinez-Ferez A, Vernon-Carter EJ, Food Hydrocoll., 25, 577, 2011
  18. Fennema OR, Food Chemistry, Marcel Dekker NY, 1985
  19. Myers RH, Montgomery DC, Response surface methodology process and product optimization using designed experiments, Wiley, NY, 2002
  20. Lapin LL, Modern Engineering Statistics, Wards-worth Publishing Company, Belmont, CA, USA, 1997
  21. http://www.statease.com/dx8_man.html.
  22. Kim Y, Morr C, Schenz T, J. Agric. Food Chem., 44, 1308, 1996
  23. Aoki T, Decker AE, McClements DJ, Food Hydrocoll., 19, 209, 205
  24. Yadav MP, Igartuburu M, Yan Y, Nothnagel EA, Food Hydrocoll., 21, 297, 2007
  25. Jiao J, Burgess DJ, AAPS PharmSci., 5(1) Article 7, (http://www.pharmsci.org), 2003
  26. Lutz R, Aserin A, Wicker L, Garti N, Colloids Surf., B., 72, 121, 2009
  27. Torres LG, Iturbe R, Snowden MJ, Chowdhry BZ, Leharne SA, Colloids Surf., A., 302, 439, 2007
  28. Ibanoglu E, J. Food Eng., 52(3), 273, 2002
  29. Toledo R, Fundamentals of food process engineering, van Nostrand Reinhold: NY, 1991
  30. Doran PM, Bioprocess engineering principles, Academic Press, 1995
  31. Huang X, Kakuda Y, Cui W, Food Hydrocoll., 15, 533, 2001
  32. Frelichowska J, Bolzinger MA, Chevalier Y, J. Colloid Interface Sci., 351(2), 348, 2010
  33. Gullapalli RP, Sheth BB, Eur. J. Pharm. Biopharm., 48, 233, 1999