Issue
Korean Journal of Chemical Engineering,
Vol.31, No.9, 1668-1673, 2014
High-temperature CO2 sorption on Na2CO3-impregnated layered double hydroxides
Layered double hydroxide (LDH), one of representative high-temperature CO2 sorbents, has many advantages, including stable CO2 sorption, fast sorption kinetics, and low regeneration temperature. However, CO2 sorption uptake on LDH is not high enough for practical use; thus it is usually enhanced by impregnation with alkali metals such as K2CO3. In this study, LDH was impregnated with Na2CO3, and analyses based on scanning electron microscopy, N2 gas physisorption, in situ X-ray diffraction, and Fourier transform infrared spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of CO2 sorption. Although the surface area of LDH decreased after Na2CO3 impregnation, CO2 sorption uptake was greatly enhanced by the additional basicity of Na2CO3. The crystal structure of Na2CO3 in the Na2CO3-impregnated LDH changed from monoclinic to hexagonal with increasing temperature, and the sorbed-CO2 was stored in the form of carbonate. Thermogravimetric analysis was used to measure CO2 sorption uptake at 200-600 ℃. The sample of Na2CO3 : LDH=0.35 : 1 weight ratio had the largest CO2 sorption uptake among the tested sorbents, and the CO2 sorption uptake tended to increase even after 400 ℃.
[References]
  1. Parry ML, Carter TR, Hulme M, Global Environ., 6, 1, 1996
  2. Oppenheimer M, Petsonk A, Climatic Change, 73, 195, 2005
  3. Svensson R, Odenberger M, Johnsson F, Stromberg L, Energy Conv. Manag., 45(15-16), 2343, 2004
  4. Peltier R, Power, 152(2), 38, 2008
  5. Wall TF, P. Combust. Inst., 31, 31, 2007
  6. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29, 2003
  7. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153, 2005
  8. Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220, 2001
  9. Mao CF, Vannice MA, Appl. Catal. A: Gen., 111(2), 151, 1994
  10. Wu SF, Beum TH, Yang JI, Kim JN, Ind. Eng. Chem. Res., 46(24), 7896, 2007
  11. Kuramoto K, Fujimoto S, Morita A, Shibano S, Suzuki Y, Hatano H, Lin SY, Harada M, Takarada T, Ind. Eng. Chem. Res., 42(5), 975, 2003
  12. Reddy EP, Smirniotis PG, J. Phys. Chem. B, 108(23), 7794, 2004
  13. Ida JI, Lin YS, Environ. Sci. Technol., 37, 1999, 2003
  14. Ochoa-Fernandez E, Rusten HK, Jakobsen HA, Ronning M, Holmen A, Chen D, Catal. Today, 106(1-4), 41, 2005
  15. Guzman-Velderrain V, Delgado-Vigil D, Collins-Martinez V, Ortiz AL, J. New Mater. Electron. Syst., 11, 131, 2008
  16. Lee KB, Verdooren A, Caram HS, Sircar S, J. Colloid Interface Sci., 308(1), 30, 2007
  17. Kannan S, Kishore D, Hadjiivanov K, Knozinger H, Langmuir, 19(14), 5742, 2003
  18. Reddy MKR, Xu ZP, Lu GQ, da Costa JCD, Ind. Eng. Chem. Res., 45(22), 7504, 2006
  19. Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461, 2000
  20. Yong Z, Mata V, Rodriguez AE, Ind. Eng. Chem. Res., 40(1), 204, 2001
  21. Hutson ND, Attwood BC, Adsorption, 14, 781, 2008
  22. Lee KB, Beaver MG, Caram HS, Sircar S, Ind. Eng. Chem. Res., 47(21), 8048, 2008
  23. Jang HM, Lee KB, Caram HS, Sircar S, Chem. Eng. Sci., 73, 431, 2012
  24. Wang Q, Tay HH, Ng DJW, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A, ChemSusChem, 3, 965, 2010
  25. Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77, 2006
  26. Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26(24), 18788, 2010
  27. Hutson ND, Speakman SA, Payzant EA, Chem. Mater., 16, 4135, 2004
  28. Kim JW, Lee HG, Metall. Mater. Trans. B, 32, 17, 2001
  29. Othman MR, Rasid NM, Fernando WJN, Chem. Eng. Sci., 61(5), 1555, 2006
  30. Lopez T, Bosch P, Asomoza M, Gomez R, Ramos E, Mater. Lett., 31, 311, 1997
  31. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR, J. Catal., 178(2), 499, 1998
  32. Tichit D, Bennani MN, Figueras F, Ruiz JR, Langmuir, 14(8), 2086, 1998
  33. Arakcheeva A, Chapuis G, Acta Crystallogr. B, 61, 601, 2005