Issue
Korean Journal of Chemical Engineering,
Vol.31, No.9, 1582-1591, 2014
Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes
We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0 mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a KL and KF value of 1.217 L/mg and 18.14 mg^(1-n)Ln/g functionalized CNT, while 2.365 L/mg and 2.307 mg^(1-n)Ln/g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.
[References]
  1. Gupta VK, Agarwal S, Saleh TA, Water Res., 45, 1, 2011
  2. Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263, 2002
  3. Kaufman DB, Am. J. Dis. Child., 119, 374, 1970
  4. Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633, 2008
  5. Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283, 2007
  6. Hsieh SH, Horng JJ, Tsai CK, J. Mater. Res., 21, 1269, 2006
  7. Panoyotova MI, Waste Manage., 21, 671, 2001
  8. Li YH, Wang SG, Cao AY, Zhao D, Zhang XF, Xu CL, Luan ZK, Ruan DB, Liang J, Wu DH, Wei BQ, Chem. Phys. Lett., 350(5-6), 412, 2001
  9. Kuh SE, Kim DS, Environ. Technol., 21, 883, 2000
  10. Park YJ, Jung KH, Park KK, J. Colloid Interface Sci., 171(1), 205, 1995
  11. Dimitrova SV, Mehandgiev DR, Water Res., 32, 3289, 1998
  12. Iijima S, Nature, 354, 56, 1991
  13. Rouff RS, Lorents DC, Carbon, 33, 925, 1995
  14. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54, 1996
  15. Terrones M, Annu. Rev. Mater. Res., 33, 419, 2003
  16. Li YH, Zhu YQ, Zhao YM, Wu DH, Luan ZK, Diam Relat Mater., 15, 90, 2006
  17. Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK, J. Colloid Interface Sci., 323(1), 33, 2008
  18. Mubarak NM, Ruthiraan M, Sahu JN, Abdullah EC, Jayakumar NS, Sajuni NR, Tan J, Inter. J. Nanosci., 12(6), 1350044, 2013
  19. Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Ayu Haslija AB, Tan J, J. Environ. Chem. Eng., 1, 486, 2013
  20. Wu CH, J. Colloid Interface Sci., 311(2), 338, 2007
  21. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 46, 833, 2008
  22. Mubarak NM, Yusof F, Alkhatib MF, Chem. Eng. J., 168(1), 461, 2011
  23. Balasubramanian K, Burghard M, Small, 1, 180, 2005
  24. Oye MM, Yim S, Fu A, Schwanfelder K, Meyyapan M, Nguyen CV, J. Nanosci. Nanotechnol., 10, 4082, 2010
  25. Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109, 2009
  26. Laszlo K, Podkoscielny P, Dabrowski A, Appl. Surf. Sci., 252(16), 5752, 2006
  27. Wang SJ, Hu WX, Liao DW, Ng CF, Au C, Catal. Today, 93, 711, 2005
  28. Li YH, Liu FQ, Xia B, Du QJ, Zhang P, Wang DC, Wang ZH, Xia YZ, J. Hazard. Mater., 177(1-3), 876, 2010
  29. Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL, J. Phys. Chem. B, 107(16), 3712, 2003
  30. Agboola AE, Pike RW, Hertwig TA, Lou HH, Clean Technol. Environ. Policy, 9, 289, 2007
  31. Yan LH, Zechao D, Jun D, Dehai W, Zhaokun L, Yanqiu Z, Water Res., 39, 605, 2005