Issue
Korean Journal of Chemical Engineering,
Vol.31, No.9, 1532-1538, 2014
Semi-empirical modeling of carbonator with the physico-chemical characteristics of sorbent activity parameterized by the partial least squares method
We developed an evaluation module to calculate the carbon capture efficiency of a fluidized bed carbonator via the semi-empirical modeling of the solvent activity of lime particles. Since the solvent activity is affected by regeneration cycle number, reactor temperature, and particle size, two design parameters for the particle activity model, i.e., the characteristic time (t*) and the maximum conversion of particles (XN), were determined as functions of the carbonator operating conditions by applying the partial least square (PLS) method to experimental data reported in the literature. The validity of the proposed approach was shown, and the effects of reactor design factors on the carbonator performance are discussed by means of appropriate simulation studies.
[References]
  1. Andres MB, Boyd T, Grace JR, Lim CJ, Gulamhusein A, Wan B, Kurokawa H, Shirasaki Y, Int. J. Hydrog. Energy, 36(6), 4038, 2011
  2. Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust. Sci., 36, 260, 2010
  3. Deng Z, Xiao R, Jin B, Song Q, Int. J. Greenhouse Gas Control, 3, 368, 2009
  4. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 51(4), 1438, 2012
  5. Cao CQ, Zhang K, He CC, Zhao YA, Guo QJ, Chem. Eng. Sci., 66(3), 375, 2011
  6. Kianpour M, Sobati MA, Shahhosseini S, Chem. Eng. Res. Des., 90(11), 2041, 2012
  7. Grasa GS, Abanades JC, Ind. Eng. Chem. Res., 45(26), 8846, 2006
  8. Nemtsov DA, Zabaniotou A, Chem. Eng. J., 143(1-3), 10, 2008
  9. Arias B, Abanades JC, Grasa GS, Chem. Eng. J., 167(1), 255, 2011
  10. Charitos A, Hawthorne C, Bidwe AR, Sivalingam S, Schuster A, Spliethoff H, Scheffknecht G, Int. J. Greenhouse Gas Control, 4, 776, 2010
  11. Fang F, Li ZS, Cai NS, Energy Fuels, 23(1), 207, 2009
  12. Lasheras A, Strohle J, Galloy A, Epple B, Int. J. Greenhouse Gas Control, 5, 686, 2011
  13. Kunii D, Levenspiel O, Ind. Eng. Chem. Proc. Des. Dev., 7, 481, 1968
  14. Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D, AIChE J., 50(7), 1614, 2004
  15. Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883, 2009
  16. Lee DK, Chem. Eng. J., 100(1-3), 71, 2004
  17. Alvarez D, Abanades JC, Ind. Eng. Chem. Res., 44(15), 5608, 2005
  18. Geladi P, Kowalski BR, Anal. Chim. Acta, 185, 1, 1986
  19. Sharaf MA, Illman DL, Kowalski BR, Chemometrics, Wiley, New York, 1986
  20. Baffi G, Martin EB, Morris AJ, Comput. Chem. Eng., 23(3), 395, 1999
  21. Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187, 2013
  22. Lee MR, Park MJ, Jeon W, Choi JW, Suh YW, Suh DJ, Korean J. Chem. Eng., 28(11), 2142, 2011
  23. Park MJ, Dokucu MT, Doyle FJ, Ind. Eng. Chem. Res., 43(23), 7227, 2004
  24. Abanades JC, Alvarez D, Energy Fuels, 17(2), 308, 2003