Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1237-1245, 2014
Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol
In our previous study, a high CO2 absorption rate was achieved using a blended absorbent containing AMP, NH3, and TEA. The species of the blended absorbent was determined in this study using 13C nuclear magnetic resonance (NMR) spectroscopy and a modified Kent-Eisenberg model. The carbamate formation constant was also regressed using the model. Bicarbonate and carbonate ions decrease the absorption efficiency and have a positive effect on CO2 stripping. Carbamate has a negative effect on regeneration; a regeneration temperature of 373 K minimized the energy needed. In conclusion, the prediction equation and NMR analysis provide an easy way of determining carbonate group species and carbamate species concentrations, and this method will be helpful in optimizing CO2 capture with blended absorbents.
[References]
  1. Choi WJ, Min BM, Shon BH, Seo JB, Oh KJ, J. Ind. Eng. Chem., 15(5), 635, 2009
  2. Zhang P, Shi Y, Wei J, Zhao W, Qing Y, J. Environ. Sci., 20, 39, 2007
  3. Choi WJ, Min BM, Seo JB, Park SW, Oh KJ, Ind. Eng. Chem. Res., 48(8), 4022, 2009
  4. You JK, Park H, Yang SH, Hong WH, Shin W, Kang JK, Yi KB, Kim JN, J. Phys. Chem. B, 112(14), 4323, 2008
  5. Seo JB, Jeon SB, Kim JY, Lee GW, Jung JH, Oh KJ, J. Environ. Sci., 24, 494, 2012
  6. Kang MK, Jeon SB, Lee MH, Oh KJ, Korean J. Chem. Eng., 30(6), 1171, 2013
  7. Tan LS, Shariff AM, Lau KK, Bustam MA, J. Ind. Eng. Chem., 18(6), 1874, 2012
  8. Anh CK, Lee HW, Chang YS, Han KW, Kim JY, Rhee CH, Chun HD, Lee MW, Park JM, Int. J. Greenhouse Gas Control, 5, 1606, 2011
  9. Masaki I, Takahiko E, Daisuke S, Mitsubishi Heavy Industries Technical Review, 47, 37, 2010
  10. Nitta M, Hirose M, Abe T, Furukawa Y, Sato H, Yamanaka Y, Energy Procedia, 37, 869, 2013
  11. Yang Q, Bown M, Ali A, Winkler D, Puxty G, Attalla M, Energy Procedia, 1, 955, 2009
  12. Jakobsen JP, Krane J, Svendsen HF, Ind. Eng. Chem. Res., 44(26), 9894, 2005
  13. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322, 2009
  14. Ciftja AF, Ardi H, Silva EF, Svendsen HF, Energy Procedia, 4, 614, 2011
  15. Francesco B, Fabrizio M, Maurizio P, Int. J. Greenhouse Gas Control, 16, 217, 2013
  16. Ahn CK, Lee HW, Chang YS, Han K, Kim JY, Rhee CH, Int. J. Greenhouse Gas Control, 5, 1606, 2011
  17. Ahn CK, Lee HW, Lee MW, Chang YS, Han KR, Rhee CH, Kim JY, Chun HD, Park JM, Energy Procedia, 4, 541, 2011
  18. Tong D, Trusler JP, Maitland GC, Gibbins J, Fennell PS, Int. J. Greenhouse Gas Control, 6, 37, 2012
  19. Barzaglia F, Mania F, Peruzzinib M, Int. J. Greenhouse Gas Control, 5, 448, 2011
  20. Ballard M, Bown M, James S, Yang Q, Energy Procedia, 4, 291, 2011
  21. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 3, 772, 2010
  22. Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779, 1997
  23. Chen CC, Evans LBA, AIChE J., 32, 444, 1986
  24. Deshmukh RD, Mather AE, Chem. Eng. Sci., 36, 355, 1981
  25. Kent RL, Eisenberg B, Hydrocarbon Process., 55(2), 87, 1976
  26. Fouad WA, Berrouk AS, Ind. Eng. Chem. Res., 51(18), 6591, 2012
  27. Tontlwachwuthlkul P, Meisen A, Lim CJ, J. Chem. Eng. Data, 36, 130, 1991
  28. Cheng MD, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 42(3), 342, 2010
  29. Guldo S, David WS, Ind. Eng. Chem. Fundam., 22, 239, 1983
  30. Lee DH, Choi WJ, Moon SJ, Ha SH, Kim IG, Oh KJ, Korean J. Chem. Eng., 25(2), 279, 2008
  31. Mahdi G, Vahid T, Cirous G, Safekordi AA, Hesam N, Iran. J. Chem. Chem. Eng., 29, 111, 2010
  32. Kawasuishi K, Prausnitz JM, Ind. Eng. Chem. Res., 26, 1482, 1987
  33. Ciftja AF, Hartono A, Svendsen HF, Int. J. Greenhouse Gas Control, 16, 227, 2013
  34. Fouad WA, Berrouk AS, Ind. Eng. Chem. Res., 51(18), 6591, 2012
  35. Park SH, Kim SH, Min BM, J. Korean Ind. Eng. Chem., 9(1), 107, 1998
  36. Edwards TJ, Newman J, Prausnitz JM, Am. Inst. Chem. Eng., 21, 248, 1975
  37. Rumpf B, Maurer G, Ind. Eng. Chem. Res., 32, 1780, 1993
  38. Morrow JS, Keim P, Gurd FRN, J. Biol. Chem., 249, 7484, 1974
  39. Zweier JL, Wooten JB, Cohen JS, Biochemistry, 20, 3505, 1981
  40. Holmes II PE, Naaz M, Poling BE, Ind. Eng. Chem. Res., 27, 3281, 1998
  41. Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC, J. Ind. Eng. Chem., 18(1), 568, 2012
  42. Kim YE, Lim JA, Jeong SK, Yoon Y, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783, 2013
  43. Arashi N, Oda N, Yamad M, Ota H, Umeda S, Tajika M, Energy Convers. Manage., 38, 63, 1997
  44. Iliuta I, Larachi F, Sep. Purif. Technol., 86, 199, 2012
  45. Bougie F, Iliuta MC, Chem. Eng. Sci., 65(16), 4746, 2010
  46. Kim DY, Lee HM, Min SK, Cho Y, Hwang IC, Han K, Kim JY, Kim KS, J. Phys. Chem. Lett., 2, 689, 2011
  47. Ho SC, Chen JM, Li MH, J. Chin. Inst. Chem. Eng., 38(3-4), 349, 2007
  48. Liu JZ, Wang SJ, Svendsen HF, Idrees MU, Kim I, Chen CH, Int. J. Greenhouse Gas Control, 9, 148, 2012
  49. Budzianowskl WB, Environ. Protect. Eng., 37, 5, 2011