Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1233-1236, 2014
Effect of shear stress on the growth of continuous culture of Synechocystis PCC 6803 in a flat-panel photobioreactor
The effect of hydrodynamic forces generated by air bubbles on cell growth of continuous culture of Synechocystis PCC 6803 was studied in a flat-panel photobioreactor. Keeping all relevant parameters constant enables the optimization of individual parameters, for which a continuous cultivation approach has significant advantages. Continuous culture of Synechocystis PCC 6803 was cultivated under different gas velocities from 0.022 m s^(-1) up to 0.128 m s^(-1). Based on direct determination of effective growth rate at constant cell densities, cell damage due to shear stress induced by the increasing gas velocity at the sparger was directly observed. A significant decrease of effective growth rate was observed at gas velocity of 0.085 m s^(-1) generated at the gas flow rate of 200 ml min^(-1), indicating cell damage by shear stress. Optimization of gas volume and the development of an effective aeration system corresponding to a given reactor setup is important to realize a reliable cell growth.
[References]
  1. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R, J. Photochem. Photobiol. C: Photochemistry Reviews, 11, 101, 2010
  2. Dutta D, De D, Chaudhuri S, Bhattacharya SK, Microb. Cell Fact., 4, 36, 2005
  3. Esper B, Badura A, Rogner M, Trends in Plant Science, 11, 543, 2006
  4. Vijayendran B, Journal of Business Chemistry, 7, 109, 2010
  5. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Science, 311, 484, 2006
  6. Demirbas A, Prog. Energy Combust. Sci., 33, 1, 2007
  7. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  8. Noue J, Laliberte G, Proulx D, J. Appl. Phycol., 4, 247, 1992
  9. Janssen M, Tramper J, Mur LR, Wijffels RH, Biotechnol. Bioeng., 81(2), 193, 2003
  10. Posten C, Engineering in Life Sciences, 9, 165, 2009
  11. Barbosa MJ, Albrecht M, Wijffels RH, Biotechnol. Bioeng., 83(1), 112, 2003
  12. Contreras A, Garcia F, Molina E, Merchuk J, Biotechnol. Bioeng., 60, 317, 2000
  13. Kwon JH, Rogner M, Rexroth S, J. Biotechnol., 162(1), 156, 2012
  14. Oie S, Obayashi A, Yamasaki H, Furukawa H, Kenri T, Takahashi M, Kawamoto K, Makino S, Biological and Pharmaceutical Bulletin, 34, 1325, 2011
  15. Czitrom V, American Statistician, 126, 1999
  16. Tang HY, Chen M, Ng KYS, Salley SO, Biotechnol. Bioeng., 109(10), 2468, 2012
  17. Havlik I, Lindner P, Scheper T, Reardon KF, Trends in Biotechnology, 31(7), 406, 2013
  18. Shcolnick S, Shaked Y, Keren N, Biochim. Biophys. Acta (BBA)-Bioenergetics, 1767, 814, 2007
  19. Zhang X, Liu S, Chen X, Ener. Procedia, 11, 2121, 2011
  20. Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB, Protoplasma, 227, 129, 2006