Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1204-1210, 2014
La-promoted Ni/γ-Al2O3 catalyst for autothermal reforming of methane
Autothermal reforming (ATR) of methane over the synthesized catalysts of 10Ni-2La/γ-Al2O3, 10Ni-2Ce/γ-Al2O3, 10Ni-2Co/γ-Al2O3 was investigated in the temperature range of 600-800 ℃ for the hydrogen production. The sequence of 2 wt% metal loading on nickel alumina support in relation to their catalytic performance was observed as La>Ce>Co. The excellent activity and selectivity of 10Ni-2La/γ-Al2O3 was superior to other catalysts owing to little carbon deposition (~2.23 mg coke/gcat·h), high surface area and good dispersion and stability in the alumina support. The reforming of methane was inferred to be initiated by the decomposition of hydrocarbon at the inlet zone, preceded by the reforming reactions in the catalyst bed. Our result shows that it can be possible to achieve the H2/CO ratio optimal to the GTL processes by controlling the O2/CH4 ratio of the feed inlet. The addition of oxygen to the feed inlet enhanced conversion efficiency substantially; probably, it favors the re-oxidation of carbonaceous residues formed over the catalyst surfaces, avoiding the catalyst deactivation and hence promoting catalyst stability.
[References]
  1. Goltsov VA, Veziroglu TN, Int. J. Hydrog. Energy, 27, 719, 2002
  2. Ohi J, Hydrogen energy futures: scenario planning by the U.S. DOE hydrogen technical advisory panel. In: Fourteenth world hydrogen energy conference, Montreal, Canada, June 9-13, 2002
  3. Hydrogen technology roadmap, Australian Government, Department of Resources, Energy and Tourism, 2008
  4. Jager B, Stud. Surf. Sci. Catal., 119, 25, 1998
  5. Colitti M, Stud. Surf. Sci. Catal., 119, 1, 1998
  6. Freni S, Cavallaro S, Int. J. Hydrog. Energy, 24(1), 75, 1999
  7. Choudhary VR, Uphade BS, Mamman AS, Appl. Catal. A: Gen., 168(1), 33, 1998
  8. Choudhary VR, Rajput AM, Prabhakar B, Angew. Chem. Int. Ed. Engl., 33, 2104, 1994
  9. Christensen TS, Primdahl II, Hydrocarb. Process., 73(3), 39, 1994
  10. Rostrup-Nielsen JR, Ed., Catalysis, 5, Springer, Berlin, 1984
  11. Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT, Catal. Lett., 6, 181, 1990
  12. Hickman DA, Schmidt LD, Science, 259, 343, 1993
  13. Hickman DA, Haupfear EA, Schmidt LD, Catal. Lett., 17, 223, 1993
  14. Hickman DA, Schmidt LD, J. Catal., 138, 267, 1992
  15. Dissanayake D, Rosynek MP, Kharas KCCJ, Lunsford JH, J. Catal., 132, 117, 1991
  16. Torniainen PM, Chu X, Schmidt LD, J. Catal., 146(1), 1, 1994
  17. Bhattacharya AK, Breach JA, Chand S, Ghorai DK, Hartridge A, Keary J, Mallick KK, Appl. Catal., A, 80, 1, 1992
  18. Dong H, Shao ZP, Xiong GX, Tong JH, Sheng SS, Yang WS, Catal. Today, 67(1-3), 3, 2001
  19. Ahmed S, Krumpelt M, Int. J. Hydrog. Energy, 26, 291, 2001
  20. Choudhary VR, Uphade BS, Mamman AS, Micropor. Mesopor. Mater., 23, 61, 1998
  21. Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murreil AJ, Vernon PDF, Nature, 344, 319, 1990
  22. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE, J. Catal., 194(2), 240, 2000
  23. Liu ZW, Jun KW, Roh HS, Park SE, J. Power Sources, 111(2), 283, 2002
  24. Hegarty MES, O'Connor AM, Ross JRH, Catal. Today, 42(3), 225, 1998
  25. Dissanayaki D, Rosynek MP, Lunsford JH, J. Phys. Chem., 97, 3644, 1993
  26. Mallens EP, Hoebink JH, Marin GB, Catal. Lett., 33(3-4), 291, 1995
  27. van Looij F, Stobbe ER, Geus JW, Catal. Lett., 50(1-2), 59, 1998
  28. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1, 1999
  29. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293, 1990
  30. O'Connor AM, Ross JRH, Catal. Today, 46(2-3), 203, 1998