Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1174-1179, 2014
Hydrogenolysis of nitrosodimethyl amine in gas phase over Au/γ-Al2O3 nanocatalyst
Nitrosodimethyl amine (NDMA), as a carcinogenic byproduct in production of unsymmetrical dimethyl hydrazine (UDMH) in space industries, should be decomposed in the vapor phase. A suitable method for this purpose is selective catalytic hydrogenolysis of NDMA over Au/γ-Al2O3 nanocatalyst. We synthesized and characterized the Au/γ-Al2O3 nanocatalyst by homogeneous deposition-precipitation (HDP)/DP-urea method. Activity of the catalyst was influenced by nanosized Au particles, Au loading and the bed temperature. The optimum parameters for the catalyst were: Au particles <5 nm, Au loading at 1.5 wt% and bed temperature of 35-45 ℃. The reaction was strongly sensitive to the Au particle size. The reaction occurred over the catalyst to produce dimethyl amine (DMA) and nitroxyl in a selective manner. The kinetics of NDMA hydrogenolysis over the nanocatalyst was studied in an integral fixed bed reactor. There existed a consistency with the Langmuir-Hinshelwood mechanism involving dissociative adsorption of H2 and NDMA.
[References]
  1. Schmidt EW, Hydrazine and its derivatives (2nd Ed.), Wiley, New York, 2001
  2. Xu H, N-Nitrosamines in the environment, Science Press, Beijing, 1988
  3. Xu BB, Chen ZL, Qi F, Ma J, Wu FC, J. Hazard. Mater., 168(1), 108, 2009
  4. Lee J, Choi W, Yon J, Environ. Sci. Technol., 39, 6800, 2005
  5. Sharma VK, Sep. Purif. Technol., 88, 1, 2012
  6. Gui L, Gillham RW, Odziemkowski MS, Environ. Sci. Technol., 34, 3489, 2000
  7. Davie MG, Reinhard M, Shapley JR, Environ. Sci. Technol., 40, 7329, 2006
  8. Smith GV, Notheisz F, Heterogeneous catalysis in organic chemistry, Academic Press, New York, 1999
  9. Haruta M, Catal. Surv. Jpn., 1, 61, 1997
  10. Santos LL, Serna P, Corma A, Chem. Eur. J., 15, 8196, 2009
  11. Corma A, Serna P, Science, 313, 332, 2006
  12. Pakdehi SG, Sohrabi M, Chem. Eng. Technol., 34(11), 1840, 2011
  13. Hugon A, Delannoy L, Krafft JM, Louis C, J. Phys. Chem. C, 114, 10823, 2010
  14. Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM, Biochem. J., 379, 359, 2004
  15. Shafirovich V, Lymar SV, Proceedings of the National Academy of Sciences, 99, 7340, 2002
  16. Greenwood NN, Earnshaw A, Chemistry of the elements, Elsevier, Oxford, 1997
  17. Kartusch C, van Bokhoven JA, Gold Bull., 42, 343, 2009
  18. Bond GC, Thompson DT, Catal. Rev.-Sci. Eng., 41(3-4), 319, 1999
  19. McEwana L, Juliusa M, Robertsa S, Fletchera JCQ, Gold Bull., 43, 298, 2010
  20. Hussain A, A computational study of catalysis by gold in applications of CO oxidation, Ph.D. Thesis, Eindhoven: Technische Universiteit Eindhoven, 2010
  21. Comotti M, Nano-design as a powerful tool in gold catalyzed oxidation reactions, Ph.D. Thesis, Bochum: Universitat Bochum, 2007
  22. Okumura M, Akita T, Haruta M, Catal. Today, 74(3-4), 265, 2002
  23. Huang D, Liao F, Molesa S, Redinger D, Subramanian V, J. Electrochem. Soc., 150, 412, 2003
  24. Perego C, Peratello S, Catal. Today, 52(2-3), 133, 1999
  25. Ishida T, Kawakita N, Akita T, Haruta M, Gold Bull., 42, 267, 2009
  26. Aufray M, Roche AA, Appl. Surf. Sci., 254, 1936, 2007