Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1148-1161, 2014
Computational fluid dynamics simulations of interphase heat transfer in a bubbling fluidized bed
Numerical simulations based on the Eulerian-Eulerian approach have been performed in the study of interphase heat transfer in a gas solid fluidized bed. The kinetic theory of granular flow (KTGF) has been used to describe the solid phase rheology. An assessment of drag models in the prediction of heat transfer coefficients shows that no major difference is observed in the choice of the drag model used. Fluctuations of the interphase heat transfer coefficient have been found to be closely related to the bubble motion in the bed. Effects of the wall boundary condition, inlet gas velocity, initial bed height and particle size on the predicted heat transfer coefficient have also been investigated. Typical temperature profiles in the bed show that thermal saturation is attained instantaneously close to the gas distributor. Simulated results of the coefficients are in fair agreement with those reported in literature.
[References]
  1. Mickley HS, Fairbanks DF, AIChE J., 1, 374, 1955
  2. Brodkey RS, Kim DS, Sidner W, Int. J. Heat Mass Transfer, 34, 2327, 1991
  3. Figliola RS, Beasley DE, Chem. Eng. Sci., 48, 2901, 1993
  4. Yusuf R, Halvorsen B, Melaaen MC, Int. J. Multiphase Flow, 42, 9, 2012
  5. Kuipers J, Prins W, Swaaij W, AIChE J., 38, 1079, 1992
  6. Syamlal M, Gidaspow D, AIChE J., 31, 127, 1985
  7. Patil DJ, Smit J, Annaland MV, Kuipers JAM, AIChE J., 52(1), 58, 2006
  8. Armstrong LM, Gu S, Luo KH, Int. J. Heat Mass Transf., 53(21-22), 4949, 2010
  9. Delvosalle C, Vanderschuren J, Chem. Eng. Sci., 40, 769, 1985
  10. Chang J, Wang G, Gao J, Zhang K, Chen H, Yang Y, Powder Technol., 217, 50, 2012
  11. Yang YR, Yang JQ, Chen W, Rong SX, Ind. Eng. Chem. Res., 41(10), 2579, 2002
  12. Kunii D, Levenspiel O, Fluidization engineering, Butterworth-Heinemann Boston, 1991
  13. Kaneko Y, Shiojima T, Horio M, Chem. Eng. Sci., 54(24), 5809, 1999
  14. Behjat Y, Shahhosseini S, Hashemabadi SH, International Communications in Heat and Mass Transfer, 35, 357, 2008
  15. Hamzehei M, Rahimzadeh H, Ahmadi G, Ind. Eng. Chem. Res., 49(11), 5110, 2010
  16. Chen XZ, Luo ZH, Yan WC, Lu YH, Ng IS, AIChE J., 57(12), 3351, 2011
  17. Syamlal M, O’Brien TJ, AIChE Symposium Series, 85, 22, 1989
  18. Syamlal M, O’Brien TJ, The derivation of a drag coefficient formula from velocity-voidage correlations, US Department of Energy, Morgantown, 1987
  19. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press, 1994
  20. Cao J, Ahmadi G, Int. J. Multiph. Flow, 21(6), 1203, 1995
  21. Benyahia S, Syamlal M, O'Brien TJ, Powder Technol., 162(2), 166, 2006
  22. Lun C, Savage S, Jeffrey D, Chepurniy N, J. Fluid Mech., 140, 223, 1984
  23. Schaeffer DG, Journal of Differential Equations, 66, 19, 1987
  24. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449, 1986
  25. Gunn D, Int. J. Heat Mass Transfer, 21, 467, 1978
  26. Ranz W, Marshall W, Chem. Eng. Prog., 48, 141, 1952
  27. Wakao N, Kaguei S, Funazkri T, Chem. Eng. Sci., 34, 325, 1979
  28. Cybulski A, Van Dalen MJ, Verkerk JW, Van Den Berg PJ, Chem. Eng. Sci., 30, 1015, 1975
  29. Nelson PA, Galloway TR, Chem. Eng. Sci., 30, 1, 1975
  30. Bird B, Stewart W, Lightfoot E, Transport phenomena, revised 2nd Ed., John Wiley & Sons, Inc., 2006
  31. Deen NG, Kriebitzsch SHL, Van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 81, 329, 2012
  32. Sun JY, Zhou YF, Ren CJ, Wang JD, Yang YR, Chem. Eng. Sci., 66(21), 4972, 2011
  33. Taghipour F, Ellis N, Wong C, Chem. Eng. Sci., 60(24), 6857, 2005
  34. Johnson P, Jackson R, J. Fluid Mech., 176, 67, 1987
  35. Li TW, Grace J, Bi XT, Powder Technol., 203(3), 447, 2010
  36. Yusuf R, Melaaen MC, Mathiesen V, Chem. Eng. Technol., 28(1), 13, 2005
  37. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21, 2013
  38. Loha C, Chattopadhyay H, Chatterjee PK, Chem. Eng. Sci., 75, 400, 2012
  39. Vejahati F, Mahinpey N, Ellis N, Nikoo MB, Can. J. Chem. Eng., 87(1), 19, 2009
  40. Armstrong LM, Gu S, Luo KH, Int. J. Multiphase Flow, 36, 916, 2010
  41. Grace JR, Powder Technol., 113(3), 242, 2000
  42. Botterill JSM, Fluid-bed heat transfer: Gas-fluidized bed behaviour and its influence on bed thermal properties, Academic Press, London, 1975
  43. Loha C, Chattopadhyay H, Chatterjee PK, Particuology, 11, 673, 2013
  44. Tuot J, Clift R, AIChE Symp. Ser., 78, 1973
  45. Jaiboon Oa, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Powder Technol., 233, 215, 2013
  46. Baskakov AP, Tuponogov VG, Filippovsky NF, Powder Technol., 45, 113, 1986
  47. Olaofe OO, van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 66(12), 2764, 2011
  48. Chen XZ, Shi DP, Gao X, Luo ZH, Powder Technol., 205(1-3), 276, 2011
  49. Wang JD, Ren CJ, Yang YR, Hou LX, Ind. Eng. Chem. Res., 48(18), 8508, 2009
  50. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21, 2013
  51. DeChellis ML, Griffin JR, Muhle ME, US Patent, 5,405,922, 1995
  52. Van Heerden C, Nobel A, Van Krevelen D, Ind. Eng. Chem., 45, 1237, 1953
  53. Hill RJ, Koch DL, Ladd AJ, J. Fluid Mech., 448, 213, 2001
  54. Hill RJ, Koch DL, Ladd AJ, J. Fluid Mech., 448, 243, 2001
  55. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449, 1986