Issue
Korean Journal of Chemical Engineering,
Vol.31, No.5, 905-910, 2014
Electrochemical properties of Co-less layered transition metal oxide as high energy cathode material for Li-ion batteries
High energy nickel manganese cobalt oxide materials (HENMC) are one of the most viable cathode materials for a high energy density lithium ion battery (LIB), but they contain expensive and toxic cobalt (Co). We synthesized Co-free high energy nickel manganese oxide cathode materials (HENM) via a solid state reaction method and a coprecipitation method. Their structural and electrochemical properties were comparatively investigated using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), electron probe micro-analysis (EPMA), particle size analysis (PSA) and electrochemical impedance spectroscopy (EIS). The co-precipitated HENM and the solid state fabricated HENM showed high capacities of 250 mAhg^(-1) and 240 mAhg^(-1), respectively. It suggests that the solid state fabricated method of HENM would be a good candidate for practical application as well as the co-precipitated one.
[References]
  1. Ellis BL, Lee KT, Nazar LF, Chem. Mater., 22, 691, 2010
  2. Dominko F, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik M, Electrochem. Commun., 8, 217, 2006
  3. Doe RE, Persson KA, Meng YS, Ceder G, Chem. Mater., 20, 5274, 2008
  4. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM, J. Mater. Chem., 17, 2069, 2007
  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA, J. Mater. Chem., 17, 3112, 2007
  6. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM, Synth. Chem. Mater., 20, 6095, 2008
  7. Kang SH, Lu W, Gallagher KG, Park SH, Pol VG, J. Electrochem. Soc., 158, 936, 2011
  8. Kim GY, Yi SB, Park YJ, Kim HG, Mater. Res. Bull., 43(12), 3543, 2008
  9. Wang QY, Liu J, Murugan AV, Manthiram A, J. Mater. Chem., 19, 4965, 2009
  10. Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y, J. Power Sources, 195(2), 567, 2010
  11. Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292, 2010
  12. Liu J, Manthiram A, J. Mater. Chem., 20, 3961, 2010
  13. Liu J, Reeja-Jayan B, Manthram A, J. Phys. Chem. C, 114, 9528, 2010
  14. Liu J, Wang Q, Reeja-Jayan B, Manthram A, Electrochem. Commun., 12, 750, 2010
  15. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Gobes G, Markovsky B, Aurbach D, J. Electrochem. Soc., 157, 1121, 2010
  16. Park SH, Kang SH, Johnson CS, Amine K, Thackeray MM, Electrochem. Commun., 2, 262, 2007
  17. Cabana J, Kang SH, Johnson CS, Thackeray MM, Grey CP, J. Electrochem.Soc., 156, 730, 2009
  18. Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Breger J, Shao-Horn Y, Chem. Mater., 17, 2386, 2005
  19. Breger J, Jiang M, Dupre N, Meng YS, Shao-Horn Y, Ceder G, Grey CP, J. Solid State Chem., 178, 2575, 2005
  20. Massarotti V, Bini M, Capsoni D, Altomare A, Moliterni AGG, J. Appl. Crystallogr., 30, 123, 1997
  21. Strobel P, Lambertandron B, J. Solid State Chem., 75, 90, 1988
  22. Riou A, Lecerf A, Gerault Y, Cudennec Y, Mater. Res. Bull., 27, 269, 1992
  23. Boulineau A, Croguennec L, Delmas C, Weill F, Solid State Ion., 180(40), 1652, 2010
  24. Ohzuku T, Makimura Y, Chem. Lett., 7, 642, 2001
  25. Deng H, Belharouak I, Cook RE, Wu H, Sun YK, Amine K, J. Electrochem. Soc., 157, 447, 2010
  26. Seo HR, Lee EA, Yi CW, Kim KO, J. Electrochem. Sci. Technol., 3, 180, 2011
  27. Makimura Y, Ohzuku T, J. Power Sources, 119, 156, 2003
  28. Liao PY, Duh JG, Sheu HS, J. Power Sources, 183(2), 766, 2008
  29. Yu DYW, Yanagida K, Kato Y, Nakamura H, J. Electrochem. Soc., 156, 417, 2009
  30. Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK, J. Power Sources, 162(2), 1346, 2006
  31. Hong JH, Seo DH, Kim SW, Gwon HJ, Oh ST, Kang KS, J. Mater. Chem., 20, 10179, 2010
  32. Lu Z, Dahn JR, J. Electrochem. Soc., 149, 815, 2002