Issue
Korean Journal of Chemical Engineering,
Vol.31, No.5, 861-867, 2014
Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles
Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO2 (5 g/L TiO2) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO2/UV-A inducing oxidative stress (0.1 g/L TiO2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO2/UV-A.
[References]
  1. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71, 2011
  2. Sander K, Murthy GS, Int. J. Life Cycle Ass., 15, 704, 2010
  3. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  4. Chen M, Liu T, Chen X, Chen L, Zhang W, Wang J, Gao L, Chen Y, Peng X, Eur. J. Lipid Sci. Technol., 114, 205, 2012
  5. Sharma KK, Schuhmann H, Schenk PM, Energies., 5, 1532, 2012
  6. Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN, Russ J. Plant Physiol., 55, 455, 2008
  7. Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T, Biotechnol. Bioeng., 109(8), 1947, 2012
  8. Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223, 2006
  9. Li Z, Keasling JD, Niyogi KK, Plant Physiol., 158, 313, 2012
  10. Solovchenko AE, Russ J. Plant Physiol., 59, 167, 2012
  11. Aruoja V, Dubourguier HC, Kasemets K, Kahru A, Sci. Total Environ., 407, 1461, 2009
  12. Zhukova LV, Kiwi J, Nikandrov VV, Colloids Surf. B Biointerfaces., 97, 240, 2012
  13. Kim SC, Lee DK, Microchem. J., 80, 227, 2005
  14. Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633, 2000
  15. Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS, PLoS ONE., 7, e30321, 2012
  16. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64, 2008
  17. Ogino C, Dadjour MF, Iida Y, Shimizu N, J. Hazard. Mater., 153(1-2), 551, 2008
  18. Harris EH, Chlamydomonas sourcebook: Introduction to chlamydomonas and its laboratory use, Academic Press, UK, 2009
  19. Ritchie RJ, Photosynth Res., 89, 27, 2006
  20. Chae SR, Shin HS, Process Biochem., 42, 193, 2007
  21. Yoo G, Park WK, Kim CW, Choi YE, Yang JW, Bioresour. Technol., 123, 717, 2012
  22. Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357, 2013
  23. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A, Ecotoxicol. Environ. Saf., 74, 1180, 2011
  24. Taloria D, Samanta S, Das S, Pututunda C, APCBEE Procedia., 2, 43, 2012
  25. Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH, Biotechnol. Bioeng., 106(4), 638, 2010
  26. Forjan E, Garbayo I, Henriques M, Rocha J, Mar. Biotechnol. (NY), 13, 366, 2011
  27. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621, 2008
  28. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A, Free Radic Biol. Med., 51, 1872, 2011
  29. Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R, Toxicol. Sci., 119, 135, 2011
  30. Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A, Environ. Sci. Technol., 45, 6617, 2011
  31. Ledford HK, Niyogi KK, Plant Cell. Environ., 28, 1037, 2005
  32. Ji J, Long ZF, Lin DH, Chem. Eng. J., 170(2-3), 525, 2011