Issue
Korean Journal of Chemical Engineering,
Vol.31, No.4, 630-638, 2014
Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles: Process optimization and kinetic studies
We studied the optimization of hexavalent chromium (Cr(VI)) removal from aqueous solution using the synthesized zero-valent iron nanoparticles stabilized with sepiolite clay (S-ZVIN), under various parameters such as reaction time (min), initial solution pH and concentration of S-ZVIN (g·L^(-1)) using response surface methodology (RSM). The kinetic study of Cr(VI) was conducted using three types of the most commonly used kinetic models including pseudo zero-order, pseudo first-order, and pseudo second-order models. The rate of reduction reaction showed the best fit with the pseudo first-order kinetic model. The process optimization results revealed a high agreement between the experimental and the predicted data (R2=0.945, Adj-R2=0.890). The results of statistical analyses showed that reaction time was the most impressive factor influencing the efficiency of removal process. The optimum conditions for maximum response (98.15%) were achieved at the initial pH of 4.7, S-ZVIN concentration of 1.3 g·L^(-1) and the reaction time of 75 min.
[References]
  1. Palmer CD, Plus RW, EPA, 540/5-94/505, 1994
  2. World Health Organization, Guidelines for drinking water quality, Health criteria and other supporting information, WHO, Geneva, 2, 1996
  3. Pantsar-Kallio M, Reinikainen SP, Oksanen M, Anal. Chim. Acta, 439, 9, 2011
  4. International Agency for Research on Cancer (IARC), Chromium and chromium compounds; IARC Monograph Evaluating Carcinogenic Risks to Humans, 49, 1990
  5. Cao HS, Zhang WX, J. Hazard. Mater., 132(2-3), 213, 2006
  6. Zongo I, Leclerc JP, Maiga HA, Wethe J, Lapicque F, Sep. Purif. Technol., 66(1), 159, 2009
  7. Kim DG, Hwang YH, Shin HS, Ko SO, Desal. Water Treat., 49, 147, 2012
  8. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S, Desalination, 270(1-3), 105, 2011
  9. Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67, 2005
  10. Esfahani AR, Firouzi AF, Sayyad G, Kiasat A, Alidokht L, Khataee AR, Res. Che. Intm., 40, 431, 2014
  11. Chuang FW, Larson RA, Wessman MS, Environ. Sci. Technol., 29, 2460, 1995
  12. Wai CM, Yak HK, Wenclawiak BW, Cheng IF, Doyle JG, Environ. Sci. Technol., 33, 1307, 1999
  13. Agrawal A, Tratnyek PG, Environ. Sci. Technol., 30, 153, 2005
  14. Badstra JZ, Miehr R, Johnson RL, Tratnyek PG, Environ. Sci. Technol., 39, 230, 2005
  15. Satapanajaru T, Anurakpongsatorn P, Songsasen A, Boparai H, Park J, Water. Air. Soil. Pollut., 175, 361, 2006
  16. Sun YP, Li XQ, Zhang WX, Wang HP, J. Colloid Interface Sci., 308, 60, 2007
  17. He F, Zhao D, Environ. Sci. Technol., 39, 3314, 2005
  18. He F, Zhang M, Qian TW, Zhao DY, J. Colloid Interface Sci., 334(1), 96, 2009
  19. Lin YH, Tseng HH, Wey MY, Lin MD, Colloids Surf., A., 349, 134, 2009
  20. Tiraferri A, Chen KL, Sethi R, Elimelech M, J. Colloid Interface Sci., 324(1-2), 71, 2008
  21. Reyhanitabar A, Alidokht L, Khataee AR, Oustan S, Eur. J. Soil. Sci., 63, 724, 2012
  22. Zhang X, Lin S, Chen Z, Megharaj M, Naidu R, Water Res., 45, 3481, 2011
  23. Sin JC, Lam SM, Mohamed AR, Korean J. Chem. Eng., 28(1), 84, 2011
  24. KeshavarzJafarzadeh N, Sharifnia H, Hosseini SN, Rahimpour F, Korean J. Chem. Eng., 28, 531, 2011
  25. Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364, 2009
  26. Imandi SB, Chinthala R, Saka S, Vechalapu RR, Nalla KK, Korean J. Chem. Eng., 30(5), 1067, 2013
  27. Kim D, Song Y, Park Y, Korean J. Chem. Eng., 30(3), 664, 2013
  28. Song Y, Kim D, Park Y, Korean J. Chem. Eng., 28(1), 156, 2011
  29. Aber S, Khataee A, Sheydaei M, Bioresour. Technol., 100(24), 6586, 2009
  30. Ishak S, Malakahmad A, Korean J. Chem. Eng., 30(5), 1083, 2013
  31. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S, Clean-Soil. Air Water, 39, 633, 2011
  32. Murugesan A, Ravikumar L, SathyaSelvaBala V, SenthilKumar P, Vidhyadevi T, Kirupha SD, Kalaivani SS, Krithiga S, Sivanesan S, Desalination, 271(1-3), 199, 2011
  33. Khataee AR, Environ. Technol., 31, 73, 2010
  34. Aleboyeh A, Daneshvar N, Kasiri MB, Chem. Eng. Process., 47(5), 827, 2008
  35. Haaland PD, Experimental design in biotechnology, Marcel Dekker, New York, Basel, 1989
  36. Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B, Chem. Eng. J., 181, 198, 2010
  37. Xu Y, Zhao D, Water. Res., 41, 2101, 2007
  38. Hojati S, Khademi H, J. Cent. South. Univ. T., 20, 3627, 2013
  39. Liu HL, Chiou YR, Chem. Eng. J., 112(1-3), 173, 2005
  40. Cicek E, Cojocaru C, Zakrzewska-Trznadel G, Harasimowicz M, Miskiewicz A, Environ. Technol., 33, 51, 2012
  41. Zhang C, Zhu Z, Zhang H, Hu Z, J. Environ. Sci., 24, 1021, 2012
  42. Jovanovic GN, Plazl PZ, Sakrittichai P, Al-Khaldi K, Ind. Eng. Chem. Res., 44(14), 5099, 2005
  43. Powell RM, Puls RW, Hightower SK, Sabatini DA, Environ. Sci. Technol., 29, 1913, 1995
  44. Zhou H, He Y, Lan Y, Mao J, Chen S, Chemosphere, 72, 870, 2008
  45. Fang ZQ, Qiu XQ, Huang RX, Qiu XH, Li MY, Desalination, 280(1-3), 224, 2011
  46. Alowitz MJ, Sherer MM, Environ. Sci. Technol., 36, 299, 2002
  47. Wang XS, Tang YJ, Chen LF, Li FY, Wan WY, Tan YB, Clean-Soil. Air Water, 38, 236, 2010
  48. Shi L, Zhang X, Che Z, Water Res., 45, 886, 2011
  49. Ponder SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564, 2000