Issue
Korean Journal of Chemical Engineering,
Vol.31, No.4, 619-623, 2014
Enhanced anaerobic digestion of livestock waste by ultrasonication: A tool for ammonia removal and solubilization
Ultrasonication was applied to lower the ammonia level in livestock waste to enhance the anaerobic digestion performance. In simulated waste tests, in spite of an identical temperature increase, a higher ammonia removal rate was observed at lower frequency. This could be explained by the existence of athermal effects, accounting for 64% of the total ammonia removal rate. These effects originated from various convections (micro-streaming, micro-convection, shock-waves, and micro-jets), possibly caused by stable bubbles, and this indigenous mixing ability led to a negligible effect of aeration in the ultrasound assisted ammonia stripping process. In actual waste tests, an ammonia removal rate of up to 55% was achieved with a 0.77 h^(-1) mass transfer rate coefficient. After ultrasonication (28 kHz, pH 11, 15 min) of livestock waste, 58% higher CH4 yield was achieved due to the decrease of ammonia concentration (28%) and enhanced solubilization (51%).
[References]
  1. Management of organic wastes, Ministry of Environment, Korea, 2009
  2. Mata-Alvarez J, Mace S, Llabres P, Bioresour. Technol., 74(1), 3, 2000
  3. Lu J, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK, J. Environ. Manage., 88, 1361, 2008
  4. Sung S, Liu T, Chemosphere, 53, 43, 2003
  5. Nielsen HB, Angelidaki I, Bioresour. Technol., 99(17), 7995, 2008
  6. Koster IW, Lettinga G, Agric. Wastes, 9, 205, 1984
  7. Koster IW, Lettinga G, Biol. Wastes, 25, 51, 1988
  8. Borja R, Sanchez E, Duran MM, J. Environ. Sci. Health A, 31, 479, 1996
  9. Arogo J, Zhang RH, Riskowski GL, Christianson LL, Day DL, J. Agric. Eng. Res., 73, 77, 1999
  10. Matouq MAD, Al-Anber ZA, Ultrasonics, 14, 393, 2007
  11. Suslick KS, Science, 247, 1439, 1990
  12. Wang S, Wu X, Wang Y, Li Q, Tao M, Ultrasonics, 15, 933, 2008
  13. Cheung KC, Chu LM, Wong MH, Water Air Soil Poll., 94, 209, 1997
  14. Basakcilardan-Kabakci S, Ipekoglu AN, Talini I, Environ. Eng. Sci., 24, 615, 2007
  15. Seader JD, Henley EJ, Separation process principles, New York, 1998
  16. Matter-Muller C, Gujer W, Giger W, Water Res., 15, 1271, 1981
  17. APHA, AWWA, WEF, Standard methods for the examination of water and wastewater, 20th Ed., Baltimore, 1998
  18. Lin L, Yuan SH, Chen J, Xu ZQ, Lu XH, J. Hazard. Mater., 161(2-3), 1063, 2009
  19. Laborde JL, Bouyer C, Caltagirone JP, Gerard A, Ultrasonics, 36, 589, 1998
  20. Khanna S, Jaiswal S, Goyal A, Moholkar VS, Chem. Eng. J., 200-202, 416, 2012
  21. Gustin S, Marinsek-Logar R, Process Saf. Environ. Protect., 89(1), 61, 2011
  22. Show KY, Mao T, Lee DJ, Water Res., 41, 4741, 2007
  23. Neis U, Nickel K, Tiehm A, Water Sci. Technol., 42, 73, 2000
  24. Dwyer J, Starrenburg D, Tait S, Barr K, Batstone D, Lant P, Water Res., 42, 4699, 2008
  25. Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25, 2000
  26. Bonmati A, Flotats X, Waste Manage., 23, 261, 2003
  27. Zhang L, Jahng D, J. Hazard. Mater., 182(1-3), 536, 2010