Issue
Korean Journal of Chemical Engineering,
Vol.31, No.6, 1049-1056, 2014
Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane
A supported liquid membrane with ionic liquid was used for the separation of toluene/cyclohexane. The interactions of ionic liquid with toluene and cyclohexane were calculated and experimentally studied by quantum chemical calculation and liquid-liquid extraction process. The results showed [BPy][BF4] have stronger interaction with toluene than that with cyclohexane. The selectivity of SILM processes was larger than 10 at the temperature of 323 K and the flow rate of 13.5 mL·min.1 on both shell side and lumen side. Due to the higher viscosity of IL, SILM process had good long-term stability. As the effects of mass transfer driving force of SILM process, the flux and removal efficiency increased with increase of initial toluene concentration, while the selectivity decreased because of the competitive transport. Base on the resistance in-series model and experimental results, the mass transfer resistance was mainly lay liquid membrane phase. The influence of flow rates on both sides was slight. The higher temperature could enhance the mass transfer performance significantly. The removal efficiency increased from 28.2% to 45.1% with the increasing of operation temperature from 298 K to 323 K.
[References]
  1. Razdan U, Joshi SV, Shah V, J. Curr. Sci., 85, 761, 2003
  2. Gaile AA, Zalishchevskii GD, Gafur NN, Semenov LV, Varshavskii OM, Fedyanin NP, Koldobskaya LL, Chem. Tech. Fuels Oils, 40(4), 215, 2004
  3. Welton T, Chem. Rev., 99(8), 2071, 1999
  4. Branco LC, Crespo JG, Afonso CA, Chem. Eur. J., 8, 3865, 2002
  5. McFarlane J, Ridenour WB, Luo H, Hunt RD, DePaoli DW, Ren RX, Sep. Sci. Technol., 40(6), 1245, 2005
  6. E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, R. E. Morris, Nature, 430, 1012, 2004
  7. Sheldon R, Chem. Commun., 23, 2399, 2001
  8. Weingartner H, Angew. Chem. Int. Ed. Eng., 47, 654, 2008
  9. Malik MA, Hashim MA, Nabi F, Chem. Eng. J., 171(1), 242, 2011
  10. Pereiro AB, Rodriguez A, AIChE J., 56(2), 381, 2010
  11. Zhou T, Wang ZY, Chen LF, Ye YM, Qi ZW, Freund H, Sundmacher K, J. Chem. Thermodyn., 48, 145, 2012
  12. Yang XJ, Fane AG, Bi J, Griesser HJ, J. Membr. Sci., 168(1-2), 29, 2000
  13. Ren ZQ, Zhang WD, Li HS, Lin W, Chem. Eng. J., 146(2), 220, 2009
  14. Ho SV, Sheridan PW, Krupetsky E, J. Membr. Sci., 112(1), 13, 1996
  15. Ren ZQ, Meng HL, Zhang WD, Liu JT, Cui CH, Sep. Sci. Technol., 44(5), 1181, 2009
  16. Suren S, Wongsawa T, Pancharoen U, Prapasawat T, Lothongkum AW, Chem. Eng. J., 191, 503, 2012
  17. Suren S, Pancharoen U, Thamphiphit N, Leepipatpiboon N, J. Membr. Sci., 448, 23, 2013
  18. Wongsawa T, Leepipatpiboon N, Thamphiphit N, Pancharoen U, Lothongkum AW, Chem. Eng. J., 222, 361, 2013
  19. Han D, Row KH, Molecules, 15, 2405, 2010
  20. Fortunato R, Afonso CAM, Reis MAM, Crespo JG, J. Membr. Sci., 242(1-2), 197, 2004
  21. Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB, J. Phys. Chem. B, 111(19), 5058, 2007
  22. Chakraborty M, Dobaria D, Parikh PA, Petro. Sci. Technol., 30, 2504, 2012
  23. Matsumoto M, Inomoto Y, Kondo K, J. Membr. Sci., 246(1), 77, 2005
  24. Matsumoto M, Ueba K, Kondo K, Desalination, 241(1-3), 365, 2009
  25. Wang BG, Lin J, Wu F, Peng Y, Ind. Eng. Chem. Res., 47(21), 8355, 2008
  26. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper AK, J. Phys. Chem. B, 109(4), 1593, 2005
  27. Tsuzuki S, Mikami M, Yamada S, J. Am. Chem. Soc., 129(27), 8656, 2007
  28. Tsuzuki S, Yoshida M, Uchimaru T, Mikami M, J. Phys. Chem. A, 105(4), 769, 2001
  29. Noda A, Watanabe M, Electrochim. Acta, 45(8-9), 1265, 2000
  30. Arce A, Earle MJ, Rodriguez H, Seddon KR, Green Chem., 9, 70, 2007
  31. Ren ZQ, Zhang WD, Liu YM, Dai Y, Cui CH, Chem. Eng. Sci., 62(22), 6090, 2007
  32. Viegas RMC, Rodriguez M, Luque S, Alvarez JR, Coelhoso IM, Crespo JPSG, J. Membr. Sci., 145(1), 129, 1998