Issue
Korean Journal of Chemical Engineering,
Vol.31, No.6, 961-971, 2014
Tungsten oxides supported on nano-size zirconia for cyclic production of syngas and hydrogen by redox operations
For cyclic production of syngas and H2 by redox (methane reforming-water splitting) operations, samples of tungsten oxides supported on nano-size zirconia (WO3/n-ZrO2) were investigated at 1,223 and 1,273 K and compared with those on micron-size zirconia (WO3/μ-ZrO2). The reduction characteristics of WO3/n-ZrO2 observed in this study were consistent with those of WO3/μ-ZrO2 reported in the literature. Specifically, the reduction process comprised three stages, the syngas production rate decreased as WO3 content increased, and the overall degree of reduction gradually decreased with repeated cycles. However, there were differences due to the smaller particle size, namely, WO3/n-ZrO2 yielded a higher syngas production rate and a lower H2/(CO+CO2) ratio. In addition, the hydrogen yield by water splitting was significantly lower than the amount expected based on the overall degree of WO3 reduction. The H2/(CO+CO2) ratio also gradually decreased with repeated cycles. These results were mainly attributed to rapid sintering of WO3/n-ZrO2, which gradually began to resemble WO3/μ-ZrO2.
[References]
  1. Kwak JH, Han GY, Yoon KJ, Int. J. Hydrog. Energy, 38, 8293, 2013
  2. Kogan A, Int. J. Hydrog. Energy, 23(2), 89, 1998
  3. Kodama T, Miura S, Shimizu T, Kitayama Y, Energy, 11, 1019, 1997
  4. Kodama T, Progr. Energy Combust. Sci., 29, 567, 2003
  5. Nakamura T, Solar Energy, 19, 467, 1977
  6. Lundberg M, Int. J. Hydrog. Energy, 18, 369, 1993
  7. Steinfeld A, Frei A, Kuhn P, Wuillemin D, Int. J. Hydrog. Energy, 20, 793, 1995
  8. Abanades S, Flamant G, Solar Energy, 80, 1611, 2006
  9. Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N, Solar Energy, 78, 623, 2005
  10. Kodama T, Gokon N, Yamamoto R, Solar Energy, 82, 73, 2008
  11. Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A, J. Mater. Sci., 45(15), 4163, 2010
  12. Kaneko H, Taku S, Naganuma Y, Ishihara T, Hasegawa N, Tamaura Y, J. Solar Energy Eng., 132, 0212021, 2010
  13. Aoki A, Ohtake H, Shimizu T, Kitayama Y, Kodama T, Energy, 25(3), 201, 2000
  14. Galvita V, Hempel T, Lorenz H, Rihko-Struckmann LK, Sundmacher K, Ind. Eng. Chem. Res., 47(2), 303, 2008
  15. Bohn CD, Cleeton JP, Muller CR, Chuang SY, Scott SA, Dennis JS, Energy Fuels, 24, 4025, 2010
  16. Kierzkowska AM, Bohn CD, Scott SA, Cleeton JP, Dennis JS, Muller CR, Ind. Eng. Chem. Res., 49, 5358, 2010
  17. Steinfeld A, Kuhn P, Karni J, Energy, 18, 239, 1993
  18. Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D, Energy, 23(10), 803, 1998
  19. Otsuka K, Wang Y, Nakamura M, Appl. Catal. A: Gen., 183(2), 317, 1999
  20. Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI, Solar Energy, 73, 363, 2002
  21. Go KS, Son SR, Kim SD, Int. J. Hydrog. Energy, 33, 5986, 2008
  22. Kang KS, Kim CH, Cho WC, Bae KK, Woo SW, Park CS, Int. J. Hydrog. Energy, 33, 4560, 2008
  23. Kang KS, Kim CH, Bae KK, Cho WC, Kim WJ, Kim YH, Kim SH, Park CS, Int. J. Hydrog. Energy, 35, 568, 2010
  24. Jeong HH, Kwak JH, Han GY, Yoon KJ, Int. J. Hydrog. Energy, 36, 15221, 2011
  25. Kodama T, Ohtake H, Matsumoto S, Aoki A, Shimizu T, Kitayama Y, Energy, 25(5), 411, 2000
  26. Shimizu T, Shimizu K, Kitayama Y, Kodama T, Solar Energy, 71, 315, 2001
  27. Kodama T, Shimizu T, Satoh T, Shimizu KI, Energy, 28(11), 1055, 2003
  28. Sim A, Cant NW, Trimm DL, Int. J. Hydrog. Energy, 35, 8953, 2010
  29. Kwak JH, Thesis Ph.D., Sungkyunkwan University, 2012
  30. Fahim NF, Sekino T, Chem. Mater., 21, 1697, 2009
  31. Guo L, Zhao J, Wang X, Xu R, Li Y, J. Solid State Electrochem., 13, 1321, 2009
  32. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P, Curr. Opin. Solid State Mater. Sci., 11, 3, 2007
  33. Cullity BD, Elements of X-ray diffraction, 2nd Ed., Addison-Wesley, Reading, MA, 102, 1978