Issue
Korean Journal of Chemical Engineering,
Vol.31, No.6, 1036-1042, 2014
Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii
Microalgae-derived biomass has been considered as the most promising candidate for next generation biofuel due to its sustainability and biodegradability. In this study, microalgal strain Chlamydmonas reinhardtii was randomly mutagenized by using a chemical mutagen, ethyl methane sulfonate (EMS) to create mutants showing enhanced lipid production. We identified three random mutants that displayed high lipid production in the screening using Nile red staining. Among those, mutant #128 was selected as candidate for further studies. Our flow cytometry and confocal microscopy analysis revealed that mutant #128 contains larger and more abundant lipid bodies than that of wild-type. Moreover, mutant #128 showed 1.4-fold increased fatty acid methyl ester (FAME) content compared to wild-type under nitrogen depleted condition. In addition, mutant #128 grew faster and accumulated more biomass, resulting in high lipid production. 2D gel electrophoresis and MALDI-TOF analysis used for gene targeting revealed that β-subunit of mitochondrial ATP Synthase and two-component response regulator PilR may be involved in enhanced characteristics of mutant #128. These results show the possibilities of EMS mediated random mutagenesis in generation of mutants to produce high amount of lipid as well as further study for molecular mechanism of mutants.
[References]
  1. McKendry P, Bioresour. Technol., 83(1), 37, 2002
  2. Nigam PS, Singh A, Prog. Energy Combust. Sci., 37, 52, 2011
  3. Mata TM, Martins AA, Caetano NS, Renewable Sustainable Energy Rev., 14, 217, 2010
  4. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  5. Minowa T, Yokoyama S, Kishimoto M, Okakura T, Fuel, 74, 1735, 1995
  6. Ahmad A, Yasin N, Derek C, Lim J, Renewable Sustainable Energy Rev., 15, 584, 2011
  7. Pienkos PT, Darzins A, Biofuels, Bioprod. Biorefin., 3, 431, 2009
  8. Amaro HM, Guedes AC, Malcata FX, Appl. Energy, 88(10), 3402, 2011
  9. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J, Biotechnol. Biofuels, 5, 1, 2012
  10. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC, Nat. Commun., 3, 686, 2012
  11. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Science, 318, 245, 2007
  12. Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Science, 324, 268, 2009
  13. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M, Planta, 229, 873, 2009
  14. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC, Eukaryotic Cell, 9, 486, 2010
  15. Goodenough UW, Cell, 70, 533, 1992
  16. Harris EH, Annu. Rev. Plant Biol., 52, 363, 2001
  17. Zorin B, Lu Y, Sizova I, Hegemann P, Gene, 432, 91, 2009
  18. Beer LL, Boyd ES, Peters JW, Posewitz MC, Curr. Opin. Biotechnol., 20, 264, 2009
  19. Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R, J. Biosci. Bioeng., 105(4), 403, 2008
  20. Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA, Biotechnol. Bioeng., 107(2), 258, 2010
  21. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC, Eukaryotic Cell, 9, 1251, 2010
  22. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR, Appl. Biochem. Biotechnol., 157(3), 507, 2009
  23. Kim YH, Park HJ, Lee SH, Lee JH, Korean J. Chem. Eng., 30(2), 413, 2013
  24. Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q, Appl. Energy, 96, 371, 2012
  25. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q, J. Microbiol. Methods, 77, 41, 2009
  26. Bradford MM, Anal. Biochem., 72, 248, 1976
  27. Shevchenko A, Shevchenko A, Anal. Biochem., 296, 279, 2001
  28. Li YQ, Horsman M, Wang B, Wu N, Lan CQ, Appl. Microbiol. Biotechnol., 81(4), 629, 2008
  29. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U, Eukaryotic Cell, 8, 1856, 2009
  30. Govender T, Ramanna L, Rawat I, Bux F, Bioresour. Technol., 114, 507, 2012
  31. Cooper MS, Hardin WR, Petersen TW, Cattolico RA, J. Biosci. Bioeng., 109(2), 198, 2010
  32. Sager R, Granick S, J. Gen. Physiol., 37, 729, 1954
  33. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ, Nature, 458, 1131, 2009
  34. Sharma KK, Schuhmann H, Schenk PM, Energies, 5, 1532, 2012
  35. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621, 2008
  36. Leonardi PI, Popovich CA, Damiani MC, Econ. Eff. Biofuels. Prod., 2011
  37. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M, Chem. Eng. Process., 48(6), 1146, 2009
  38. James GO, Hocart CH, Hillier W, Chen HC, Kordbacheh F, Price GD, Djordjevic MA, Bioresour. Technol., 102(3), 3343, 2011
  39. Majeran W, Olive J, Drapier D, Vallon O, Wollman FA, Plant Physiol., 126, 421, 2001
  40. Ishimoto KS, Lory S, J. Bacteriol., 174, 3514, 1992
  41. Ota IM, Lory S, Science, 262, 566, 1993
  42. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM, Science, 262, 539, 1993
  43. Schaller GE, Shiu SH, Armitage JP, Curr. Biol., 21, R320, 2011