Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 315-321, 2014
Ternary and constituent binary excess molar enthalpies of {1,2-dichloropropane + 2-pentanol + 3-pentanol} at T=298.15K
Excess molar enthalpies for the ternary system of {1,2-dichloropropane (1,2-DCP)+2-pentanol+3-pentanol} and their constituent binary mixtures {1,2-DCP+2-pentanol}, {1,2-DCP+3-pentanol}, and {2-pentanol+3-pentanol} have been measured over the whole range of composition using an isothermal micro-calorimeter with flow-mixing cell at T=298.15 K and atmospheric pressure. The experimental excess molar enthalpies of all the binaries and ternary mixture, including three pseudo-binary mixtures, are positive (endothermic effect) throughout the mole fraction range, except for the binary mixture {2-pentanol+3-pentanol} in which shows a small negative values over the entire composition range. The experimental binary HEm, ij data were fitted to Redlich-Kister equation, and the Cibulka and the Morris equations were employed to correlate the ternary HEm, 123 data. Several empirical equations for predicting ternary excess enthalpies from constituent binary mixing data have been also examined and compared. The experimental results have been qualitatively discussed in terms of molecular interactions.
[References]
  1. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426, 2004
  2. Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444, 2006
  3. Sen D, Kim MG, Thermochim. Acta, 471(1-2), 20, 2008
  4. Sen D, Kim MG, Korean J. Chem. Eng., 26(3), 806, 2009
  5. Sen D, Kim MG, Fluid Phase Equilib., 280(1-2), 94, 2009
  6. Sen D, Kim MG, Fluid Phase Equilib., 285(1-2), 30, 2009
  7. Sen D, Kim MG, Fluid Phase Equilib., 303(1), 85, 2011
  8. Kim MG, Korean J. Chem. Eng., 29(9), 1253, 2012
  9. http://www.dec.ny.gov/chemical/89942.html.
  10. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  11. Cibulka I, Collect. Czech. Chem. Commun., 47, 1414, 1982
  12. Morris JW, Mulvey PJ, Abbott MM, Van Ness HC, J. Chem. Eng. Data, 20(4), 403, 1975
  13. Kohler F, Monatsh. Chem., 91, 738, 1960
  14. Rastogi RP, Nath J, Das SS, J. Chem. Eng. Data, 22, 249, 1977
  15. Radojkovic N, Tasic A, Grozdanic D, Djordjevic B, D Malic, J. Chem. Thermodyn., 9(4), 349, 1977
  16. Jacob KT, Fitzner K, Thermochim. Acta, 18, 197, 1977
  17. Colinet C, D. E. S., University of Grenoble, Grenoble, France, 1967
  18. Knobeloch JB, Schwartz CE, J. Chem. Eng. Data, 7, 386, 1962
  19. Tsao CC, Smith JM, Appl. Thermodyn. Chem. Eng. Prog. Symp. Ser., 49, 107, 1953
  20. Toop GW, Trans. TMS-AIME, 223, 850, 1965
  21. Scatchard G, Ticknor LB, Goates JR, McCartney ER, J. Am. Chem. Soc., 74, 3721, 1952
  22. Hillert M, Calphad, 4, 1, 1980
  23. Mathieson AR, Thynne JCJ, J. Chem. Soc., 3713, 1956
  24. Riddick JA, Bunger WB, Sakano TK(Eds.), Organic Solvents, 4th Ed., Wiley-Interscience, New York, 2, 1986
  25. Sabbah R, An XW, Chickos JS, Leitao MLP, Roux MV, Torres LA, Thermochim. Acta, 331(2), 93, 1999
  26. Wadso I, Thermochim. Acta, 347(1-2), 73, 2000
  27. Kirkup L, Data Analysis with Excel, Cambridge University Press, Cambridge, 2002
  28. Lafuente C, Artigas H, Lopez MC, Royo FM, Urieta JS, Phys. Chem. Liq., 39, 665, 2001
  29. Rambabu K, Venkateswarlu P, Raman GK, Ravikumar YVL, Phys. Chem. Liq., 21, 97, 1990
  30. Dean JA(Ed.), Lange’s Handbook of Chemistry, 15th Ed., McGraw-Hill, New York, 1999
  31. Letcher TM, Nevines JA, Vijayan RP, Radloff SE, J. Chem. Thermodyn., 25, 379, 1993
  32. Letcher TM, Nevines JA, J. Chem. Thermodyn., 26(7), 697, 1994
  33. I. Prigogine, The Molecular Theory of Solutions, North Holland Publisher Co., Amsterdam, 1957
  34. Pando C, Renuncio JAR, Calzon JAG, Christensen JJ, Izatt RM, J. Sol. Chem., 16, 503, 1987