Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 268-275, 2014
Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors - a comparative investigation
We compared the relationship of the behavior and performance of sugarcane baggase and rice straw as supercapacitor electrodes. X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. The morphology of the carbon samples was determined by SEM. The surface area, pore volume, and pore size distribution of carbon composites were measured. The electrochemical responses were studied by using cyclic voltammetry experiment at 25 ℃ in a three-electrode configuration. The specific capacitance of the sugarcane bagasse carbon electrodes was in the range 92-340 F/g, whereas for rice straw, it was found to be 56-112 F/g at scan rates of 2-3 mV/s. The sugarcane bagasse carbon exhibited better performance than rice straw carbon using H2SO4 as the electrolyte. However, the results clearly show that lignocellulosic wastes possess a new biomass source of carbonaceous materials for high-performance supercapacitors.
[References]
  1. Miller JR, Simon P, Science, 321, 651, 2008
  2. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845, 2008
  3. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11, 2006
  4. Vasile Obreja VN, Physica E: Low. Dimens. Syst. Nanostruct., 40, 2596, 2008
  5. Pessoa JA, de Manchilha IM, Sato S, J. Ind. Microbio. Biotechnol., 18, 360, 1997
  6. Robinson P, University of California Davis, Personal Communication, 2006
  7. Tsai WT, Chang CY, Lee SL, Carbon, 35, 1198, 1997
  8. Yanping G, Rockstraw DA, Micropor. Mesopor. Mater., 100, 12, 2007
  9. Hayashi J, Toshihide H, Isao T, Katsuhiko M, Fard NA, Carbon, 40, 2381, 2002
  10. Lim WC, Srinivasakannan C, Balasubramanian N, J. Anal. Appl. Pyrol., 88, 181, 2010
  11. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ, J. Power Sources, 195(3), 912, 2010
  12. Chun-Hisen H, Ruey AD, Micropor. Mesopor. Mater, 147, 47, 2012
  13. Zhang F, Wang KX, Li GD, Chen JS, Electrochem. Commun., 11, 130, 2009
  14. Salame II, Bandosz TJ, Ind. Eng. Chem. Res., 39(2), 301, 2000
  15. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London, 1982
  16. Pastor AC, Rodriguez R, Marsh H, Martinez MA, Carbon, 37, 1275, 1999
  17. Liao CP, Wu CZ, Yanyongjie, Huang HT, Biomass Bioenerg., 27(2), 119, 2004
  18. Van Soest PJ, Anim. Feed. Sci. Technol., 130, 137, 2006
  19. Raveendran K, Anuraddha G, Kartick C, Khilar K, Fuel, 74, 1812, 1995
  20. Yalcin N, Sevnic V, Ceram. Int., 27, 219, 2001
  21. Chang HY, Yun HP, Chong RP, Carbon, 39, 559, 2001
  22. Sing KSW, Pure. Appl. Chem., 54, 2201, 1982
  23. Guo YP, Yang SF, Yu KF, Zhao JZ, Wang ZC, Xu HD, Mater. Chem. Phys., 74(3), 320, 2002
  24. Fierro V, Muniz G, Basta AH, El-Saied H, Celzard A, J. Hazard. Mater., 181(1-3), 27, 2010
  25. Zhu Z, Hu Y, Jiang H, Li C, J. Power Sources, 246, 402, 2014
  26. Jeong E, Jung MJ, Lee YK, J. Fluorine Chem., 150, 98, 2013
  27. Tsai WT, Chang CY, Lin MC, Chien SF, Sun HF, Hsieh MF, Chemosphere, 45, 51, 2001
  28. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G, J. Ind. Eng. Chem., 19(5), 1470, 2013
  29. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B, J. Phys. Chem. C, 111, 7527, 2007
  30. Si WJ, Wu XZ, Xing W, Zhou J, Zhuo SP, J. Inorg. Mater., 26, 107, 2011
  31. Wu XZ, Zhou J, Xing W, Zhuo SP, J. North Uni. China, 33, 179, 2012