Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 230-239, 2014
Hydrogen production via sorption enhanced chemical looping reforming of glycerol using Ni-based oxygen carrier and Ca-based sorbent: Theoretical and experimental study
The sorption enhanced chemical looping reforming of glycerol (SECLRG) was proposed. This process can produce high purity H2 without need for additional gas separation equipment. Thermodynamic analysis on the reformer of SECLRG was conducted based on the minimization of Gibbs free energy. The results show that the favorable operation conditions for reformer are pressures around 1-20 atm, temperatures around 800 K, oxygen excess number of 1, and sorbent excess number of 1. The thermal efficiency with steam addition is higher than that without steam addition. The SECLRG was also examined in a fixed bed reactor, with NiO/Al2O3 and CaO particles as bed material and glycerol as fuel. Experimental results showed that the H2 molar fraction was higher with CaO than without it. Initially, high purity hydrogen (>95%) was obtained by SECLR of glycerol at 800 K and 1 atm.
[References]
  1. World Energy Outlook, International Energy Agency, 2004
  2. Alvarez-Galvan MC, Navarro RM, Rosa F, Briceno Y, Ridao MA, Fierro JLG, Fuel, 87(12), 2502, 2008
  3. Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 34, 8799, 2009
  4. Van Gerpen J, Fuel Process. Technol., 86(10), 1097, 2005
  5. Cortright RD, Davda RR, Dumesic JA, Nature, 418, 964, 2002
  6. Huber GW, Shabaker JW, Dumesic JA, Science, 300, 2075, 2003
  7. Adhikari S, Fernando S, Gwaltney SR, Filipto SD, Bricka RM, Steele PH, Haryanto A, Int. J. Hydrog. Energy, 32, 2875, 2007
  8. Rossi CCRS, Alonso CG, Antunes OAC, Guirardello R, Cardozo-Filho L, Int. J. Hydrog. Energy, 34, 323, 2009
  9. Zhang BC, Tang XL, Li Y, Xu YD, Shen WJ, Int. J. Hydrog. Energy, 32, 2367, 2007
  10. Slinn M, Kendall K, Mallon C, Andrews J, Bioresour. Technol., 99(13), 5851, 2008
  11. Rennard DC, Kruger JS, Schmidt LD, ChemSusChem, 2, 89, 2009
  12. Wang WJ, Fuel Process. Technol., 91(11), 1401, 2010
  13. Wang XD, Li MS, Wang MH, Wang H, Li SR, Wang SP, Ma XB, Fuel, 88(11), 2148, 2009
  14. Wang H, Wang X, Li M, Li S, Wang S, Ma X, Int. J. Hydrog. Energy, 34, 5683, 2009
  15. Richter HJ, Knoche K, Reversibility of combustion processes, efficiency and costing-second law analysis of processes, ACS Symposium Series 235, ACS, Washington, DC, 1, 1983
  16. ISHIDA M, JIN HG, Energy, 19(4), 415, 1994
  17. Mattisson T, Lyngfelt A, Applications of chemical-looping combustion with capture of CO2. Proceedings of the 2nd Nordic minisymposium on carbon dioxide capture and storage, Goteborg, Sweden, 2001
  18. Ryden M, Lyngfelt A, Mattisson T, Fuel, 85(12-13), 1631, 2006
  19. Wu YJ, Alvarado FD, Santos JC, Gracia F, Cunha AF, Rodrigues AE, Chem. Eng. Technol., 35(5), 847, 2012
  20. Cunha AF, Wu YJ, Alvarado FAD, Santos JC, Vaidya PD, Rodrigues AE, Can. J. Chem. Eng., 90(6), 1514, 2012
  21. Li YH, Wang WJ, Chen BH, Cao YY, Int. J. Hydrog. Energy, 35, 7768, 2010
  22. Kumar RV, Cole JA, Lyon RK, Unmixed reforming: An advanced steam reforming process, Preprints of Symposia, 218th,ACS National Meeting, August 22-26, New Orleans, LA, 44, 894, 1999
  23. Lyon RK, Cole JA, Combust. Flame, 121(1-2), 249, 2000
  24. Dupont V, Ross AB, Hanley I, Twigg MV, Int. J. Hydrog. Energy, 32, 67, 2007
  25. da Silva AL, Muller IL, J. Power Sources, 196(20), 8568, 2011
  26. Ryden M, Ramos P, Fuel Process. Technol., 96, 27, 2012
  27. Wang WJ, Cao YY, Wang YQ, J. Energy Inst., 84, 94, 2011
  28. Wang WJ, Cao YY, Int. J. Energy Res., 37(1), 25, 2013
  29. Pimenidou P, Rickett G, Dupont V, Twigg MV, Bioresour. Technol., 101(23), 9279, 2010
  30. de Diego LF, Ortiz M, Adanez J, Garcia-Labiano F, Abad A, Gayan P, Chem. Eng. J., 144(2), 289, 2008
  31. Wang Z, Zhou J, Wang Q, Fan J, Cen K, Int. J. Hydrog. Energy, 31, 945, 2006
  32. Hanaoka T, Yoshida T, Fujimoto S, Kamei K, Harada M, Suzuki Y, Hatano H, Yokoyama S, Minowa T, Biomass Bioenerg., 28(1), 63, 2005
  33. Curran GP, Fink CE, Gorin E, Adv. Chem. Ser., 69, 141, 1967
  34. Lin SY, Harada M, Suzuki Y, Hatano H, Fuel, 85(7-8), 1143, 2006
  35. Feng B, An H, Tan E, Energy Fuels, 21(2), 426, 2007
  36. Kinoshita CM, Turn SQ, Int. J. Hydrog. Energy, 28, 1065, 2003
  37. Mattisson T, Johansson M, Lyngfelt A, Fuel, 85(5-6), 736, 2006
  38. Corbella BM, De Diego L, Garcia F, Adanez J, Palacios JM, Energy Fuels, 19(2), 433, 2005
  39. Beatriz MC, de Diego Lf, Garca-Labiano F, Adnez J, Palacios JM, Environ. Sci. Technol., 39, 5796, 2005