Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 211-217, 2014
Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid
Three types of TiO2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO2 was successfully obtained at 100 ℃. The results indicated that amorphous TiO2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 ℃) with three catalysts. The system contained amorphous TiO2, H2O2, and [Bmim]BF4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H2O2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO2 could reach 96.6%, which was apparently superior to a system with anatase TiO2 (23.6%) or with anatase - rutile TiO2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.
[References]
  1. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, Cheong M, Energy Fuels, 22(3), 1687, 2008
  2. Lin F, Wang DE, Jiang ZX, Ma Y, Li J, Li RG, Li C, Energy Environ. Sci., 5, 6400, 2012
  3. Li FT, Liu Y, Sun ZM, Zhao Y, Liu RH, Chen LJ, Zhao DS, Catal. Sci. Technol., 2, 1455, 2012
  4. Lokhande CD, Lee EH, Jung KD, Joo OS, J. Mater. Sci., 39(8), 2915, 2004
  5. Shiraishi Y, Hirai T, Komasawa I, J. Chem. Eng. Jpn., 35(12), 1305, 2002
  6. Thu HTV, Thu TTN, Phuong HTN, Do MH, Au HT, Nguyen TB, Nguyen DL, Park JS, Mater. Res. Bull., 47(2), 308, 2012
  7. Li FT, Liu RH, Sun ZM, China Petrol. Process. Petrochem. Technol., 53, 2008
  8. RE Demaray, HM Zhang, M Narasimhan, V Milonopoulou, US Patent, 20,040,259,305 A1, 2004
  9. Zhang ZY, Maggard PA, J. Photochem. Photobiol. A, 186, 8, 2007
  10. Senevirathna MKI, Pitigala PKDDP, Tennakone K, J. Photochem. Photobiol. A: Chem., 171, 257, 2005
  11. Zhu WSA, Li HM, Gu QQ, Wu PW, Zhu GP, Yan YS, Chen GY, J. Mol. Catal. A-Chem., 336(1-2), 16, 2011
  12. Ding YX, Zhu WS, Li HM, Jiang W, Zhang M, Duan YQ, Chang YH, Green Chem., 13, 1210, 2011
  13. Zhu WS, Zhang JT, Li HM, Chao YH, Jiang W, Yin S, Liu H, RSC Adv., 2, 658, 2012
  14. Cai TJ, Liao YC, Peng ZS, Long YF, Wei ZY, Deng Q, J. Environ. Sci., 21, 997, 2009
  15. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV, Sci. Technol. Adv. Mater., 8, 455, 2007
  16. Chen YF, Lee CY, Yeng MY, Chiu HT, J. Cryst. Growth, 247(3-4), 363, 2003
  17. Kumar PM, Badrinarayanan S, Sastry M, Thin Solid Films, 358(1-2), 122, 2000
  18. Davidson RS, Morrison CL, Abraham J, J. Photochem., 24, 27, 1984
  19. Zou J, Gao JC, Xie FY, J. Alloy. Compd., 497, 420, 2010
  20. Yoshitake H, Abe D, Micropor. Mesopor. Mater., 119, 267, 2009
  21. McCafferty E, Wightman JP, Surf. Interface Anal., 26, 549, 1998
  22. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T, Catal. Today, 44(1-4), 327, 1998
  23. Muruganandham M, Swaminathan M, J. Hazard. Mater., 135(1-3), 78, 2006
  24. Matsuzawa S, Tanaka J, Sato S, Ibusuki T, J. Photochem. Photobiol. A: Chem., 149, 183, 2002
  25. Zhao DS, Liu R, Wang JL, Liu BY, Energy Fuels, 22(2), 1100, 2008
  26. Zhang J, Zhao DS, Yang LY, Li YB, Chem. Eng. J., 156(3), 528, 2010
  27. Xu JH, Zhao S, Chen W, Wang M, Song YF, Chem. Eur. J., 18, 4775, 2012
  28. Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T, Energy Fuels, 14(6), 1232, 2000
  29. Zhu WS, Li HM, Jiang X, Yan YS, Lu JD, He LN, Xia JX, Green Chem., 10, 641, 2008