Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 201-210, 2014
Evaluation of bubble suspension behavior in electrolyte melts
The viscosity of a molten electrolyte mixture commonly used in direct coal fuel cells (DCFCs) was evaluated. The measurements were obtained from near the melting temperature to a high temperature at which a considerably bubbly flow was induced by decomposition. A gravity-driven capillary viscometer was employed to obtain the viscosity data under low Reynolds flow conditions, using a modified Poiseuille flow relationship. The importance of carbon dioxide addition in measuring the intrinsic viscosity was clearly observed. In addition, the effect of the bubble suspension on the viscosity was quantified in terms of the volume fraction and capillary number. The results showed that the increase in viscosity was best explained only by the difference in the volume fraction of spherical bubbles in the electrolyte melt.
[References]
  1. Li X, Zhu ZH, Chen JL, De Marco R, Dicks A, Bradley J, Lu GQ, J. Power Sources, 186(1), 1, 2009
  2. Wolverine Tube Inc., Void fractions in two phase flows, in Engineering Data Book III, Available Online, 2007
  3. Denkov ND, Tcholakova S, Golemanov K, Subramanian V, Lips A, Colloids Surf.: A Physicochem. Eng. Aspects, 282, 327, 2006
  4. Hoehler R, Cohen-Addad S, J. Phys. Condens. Matter, 117, 1041, 2005
  5. Xu Q, Rossen WR, Colloids Surfaces: A Physicochem. Eng. Aspects, 216, 175, 2003
  6. Hackett GA, Zondlo JW, Svensson R, J. Power Sources, 168(1), 111, 2007
  7. Cao D, Sun Y, Wang G, J. Power Sources, 167, 250, 2007
  8. Murai Y, Oiwa H, Fluid Dynamics Research, 40, 565, 2008
  9. Kameda M, Katsumata T, Ichihara M, Fluid Dynamics Research, 40, 576, 2008
  10. Manga M, Lowwenberg M, J. Volcanol. Geothermal Res, 105, 19, 2001
  11. Rust AC, Manga M, J. Non-Newtonian Fluid Mech, 104, 53, 2002
  12. Rust AC, Manga M, J. Colloid Interface Sci., 249(2), 476, 2002
  13. Llewellin EQ, Manga M, J. Volcanol. Geothermal Res., 143, 205, 2005
  14. Wilke IHJ, Kryk IH, Hartman IJ, Wagner W, Theory and praxis of capillary viscometer, Chapter 2, Available Online, 2007
  15. GA Nunez, MI Briceno, DD Joseph, T Asa, Colloidal coal in water suspensions, Available Online, 2005
  16. White FM, Fluid mechanics, 2nd Ed., McGraw-Hill, 2001
  17. Morrison FA, Shear viscosity measurement in a capillary rheometer, Available Online as Lecture Note, 2007
  18. Sowinski J, Dziubinski M, Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 2007
  19. Hewitt GF, in Handbook of Multiphase Systems, G. Hetsroni, Ed., McGraw-Hill, New York, 1982
  20. Electrolyte, http://www.doitpoms.ac.uk/tlplib/fuel-cells/mcfc_electrolyte. php, Available Online, 2013
  21. Ejima T, Sato Y, Yamamura T, Tamal K, Hasebe M, J. Chem. Eng. Data, 32, 180, 1987
  22. Kreiger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137, 1959
  23. Taylor GI, Proc. R. Soc. London, Ser. A, 138, 41, 1932
  24. Frankel NA, Acrivos A, J. Fluid Mech., 44, 65, 1970
  25. Hinchi EJ, Acrivos A, J. Fluid Mech., 98, 305, 1980
  26. L'vov BV, Thermochim. Acta, 386(1), 1, 2002
  27. Incropera FP, DeWitt DP, Fundamentals of heat and mass transfer, Chapter 10, 6th Ed., Wiley, 2006
  28. L’vov BV, J. Thermal Anal. Calorimetry, 96, 487, 2009
  29. Turns SR, Introduction to combustion: Concepts and applications, Chapter 3, 2nd Ed., McGraw-Hill, 2000
  30. Stern KH, Weise EL, National Bureau of Standards, 30, 1969
  31. L'vov BV, Thermochim. Acta, 373(2), 97, 2001
  32. Lee SC, Kim MS, Hwang MK, Kim KB, Jeon CH, Song JH, Experiments in Fluid and Thermal Science, 49, 94, 2013
  33. Rohsenow WM, Trans. ASME, 74, 969, 1952
  34. Vachon RI, J. Heat Transfer, 90, 239, 1968
  35. Han CD, King RG, J. Rheol., 24, 213, 1980
  36. Choi SJ, Schowalter WR, Phys. Fluids, 18, 420, 1974