Issue
Korean Journal of Chemical Engineering,
Vol.31, No.1, 166-171, 2014
Microcellular foaming of silicone rubber with supercritical carbon dioxide
In spite of great concern on the industrial application of microcellular silicone rubber foams, such as in electric and medical devices, only a few works can be found about the foaming of silicone rubber. In this study, microcellular silicone rubber foams with a cell size of 12 μm were successfully prepared with curing by heat and foaming by supercritical CO2 as a green blowing agent. The microcellular silicone rubber foams exhibited a well-defined cell structure and a uniform cell size distribution. The crosslinking and foaming of silicone rubber was carried out separately. After foaming, the silicone rubber foam was cross-linked again to stabilize the foam structure and further improve its mechanical properties. Foaming process of cross-linked silicone rubber should be designed carefully based on the viscoelastic properties because of its elastic volume recovery in the atmosphere. The basic crosslinking condition for small cell size and high cell density was obtained after investigating the rheological behavior during crosslinking.
[References]
  1. Leitner W, Nature., 405, 129, 2000
  2. Tucker SC, Chem. Rev., 99(2), 391, 1999
  3. Kajimoto O, Chem. Rev., 99(2), 355, 1999
  4. McHugh MA, Krukonis VJ, Supercritical fluid extraction, Butterworth-Heinemann, 1994
  5. Alsoy S, Duda JL, Chem. Eng. Technol., 22(11), 971, 1999
  6. Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543, 1999
  7. Tomasko DL, Li HB, Liu DH, Han XM, Wingert MJ, Lee LJ, Koelling KW, Ind. Eng. Chem. Res., 42(25), 6431, 2003
  8. Hernandez R, Weksler J, Padsalgikar A, Runt J, Macromolecules, 40(15), 5441, 2007
  9. Yannas IV, Burke JF, J. Biomed. Mater. Res., 14, 65, 1980
  10. Abbasi F, Mirzadeh H, Simjoo M, J. Biomater. Aci. Polym.Ed., 17, 341, 2006
  11. Gao ZM, Nahrup JS, Mark JE, Sakr A, J. Appl. Polym. Sci., 96(2), 494, 2005
  12. Hergenrother RW, Xue-Hai Y, Cooper SL, Biomaterials., 15, 635, 1994
  13. Kim YB, Cho D, Park WH, J. Appl. Polym. Sci., 116(1), 449, 2010
  14. Hernandez R, Weksler J, Padsalgikar A, Runt J, J. Biomed.Mater. Res., 87A, 546, 2008
  15. Young RJ, Lowell PA, Introduction to polymers, 2nd Ed., Chapman and Hall, UK, 1991
  16. Lopez LM, Cosgrove AB, Hernandez-Ortiz JP, Osswald TA, Polym. Eng. Sci., 47(5), 675, 2007
  17. Kamarudin B, Hiroshi M, Taro E, Fumio Y, Keizo M, Polym.Deg. Stab., 62, 551, 1998
  18. Ghazali Z, Johnson AF, Dahlan KZ, Rad. Phys. Chem., 55, 73, 1999
  19. Heiner J, Stenberg B, Persson M, Polym. Testing., 22, 253, 2003
  20. Warley RL, Feke DL, Manas-Zloczower I, J. Appl. Polym. Sci., 97(4), 1504, 2005
  21. Baquey G, Moine L, Babot O, Degueil M, Maillard B, Polymer, 46(17), 6283, 2005
  22. Kawashima H, Shimbo M, Cellular Polymers., 22, 175, 2003
  23. Martini JE, Suh NP, Waldman FA, US Patent, 4,473,665, 1984
  24. Colton JS, Suh NP, Polym. Eng. Sci., 27, 500, 1987
  25. Tung CYM, Dynes PJ, J. Appl. Polym. Sci., 27, 569, 1982
  26. Malkin AY, Kulichikhin SG, Kerber ML, Gorbunova IY, Murashova EA, Polym. Eng. Sci., 37(8), 1322, 1997
  27. Hong IK, Lee S, J. Ind. Eng. Chem., 19(1), 42, 2013
  28. Shimbo M, Nomura T, Muratani K, Fukumura K, The 3rd international conference on axiomatic design, Seoul, ICAD-2004-25, 2004
  29. Kumar V, Suh NP, Polym. Eng. Sci., 30, 1323, 1990