Issue
Korean Journal of Chemical Engineering,
Vol.31, No.1, 142-154, 2014
Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies
The adsorption of Cr (VI) from aqueous solution onto nanoparticles hematite (α-Fe2O3) of different morphologies synthesized by acid hydrolysis, transformation of ferrihydrite, sol gel methods has been investigated. The hematite particle sizes were in the range 15.69-85.84 nm and exhibiting different morphologies such as hexagonal, plate-like, nano-cubes, sub-rounded and spherical. The maximum adsorption capacity of Cr (VI) was found to be in the range 6.33-200 mgg.1 for all hematite samples. The kinetics of sorption was rapid, reaching equilibrium at 45-240 minutes. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. The rate constants were in the range 0.996-2.37×10^(-2) g/mg/min for all samples. The maximum adsorption was attained at pH 3.0, while adsorption decreased as the pH increased from pH 3.0 to 10.0. The study revealed that the hematite with plate-like morphology has the highest adsorption capacity. The sorption process has been found to be feasible following a chemisorption process, and adsorption of Cr (VI) onto hematite nanoparticles was by inner sphere surface complexation due to low desorption efficiency in the range 9.54-53.4%. However, the result of ionic strength revealed that the reaction was by outer sphere complexation. This study showed that morphologies play a vital role in the adsorption capacities of samples of hematite in the removal of Cr (VI) from aqueous solution.
[References]
  1. Gao BJ, Li YB, Chen ZP, Chem. Eng. J., 150(2-3), 337, 2009
  2. Chirwa EMN, Wang YT, Environ. Sci. Technol., 31, 1446, 1997
  3. Barai A, Engelken RD, Environ. Sci. Pollution., 5, 121, 2002
  4. Eary LE, Rai D, Environ. Sci. Technol., 22, 972, 1988
  5. Ghurye GL, Clifford DA, Tripp AR, J. Am. Water Works Assoc., 91, 85, 1999
  6. Clifford DA, Adsorption and ion exchange, in: F.W. Pontius (Ed.), Water Quality and Treatment: A Handbook of Community Water Supplies, McGraw-Hill, New York, 561, 1990
  7. Wang X, Chen XY, Ma XC, Zheng HG, Ji MR, Zhang Z, Chem. Phys. Lett., 384(4-6), 391, 2004
  8. McGraw-Hill Encyclopedia of Science and Technology New York, 8, 185, 2002
  9. Singh DB, Gupta GS, Prasad G, Rupainwar DC, J. Environ. Sci. Health., A28, 1813, 1993
  10. Brown GE, Chambers SA, Amonette JE, Rustad JR, Kendelewicz T, Doyle CS, Grolimund D, Foster-Mills NS, Joyce SA, Thevuthasan S, J. Conference Abstract., 5, 253, 2000
  11. Ajouyed O, Hurel C, Ammari M, Ben Allal L, Marmier N, J. Hazard. Mater., 174(1-3), 616, 2010
  12. Schwertmann U, Cornell RM, Iron oxide in the laboratory: preparation and characterization, Wiley-VCH Weinheim, Germany, 1, 1991
  13. Raming TP, Winnubst AJA, van Kats CM, Philipse AP, J. Colloid Interface Sci., 249(2), 346, 2002
  14. Sugimoto T, Khan MM, Muramatsu A, Colloids Surf. A: Physicochem. Eng. Aspects., 70, 167, 1993
  15. International Institute of Tropical Agriculture (IITA), Selected Methods for Soil and Plant Analysis. Manual Series, 1, 3, 1979
  16. Hameed BH, Krishni RR, Sata SA, J. Hazard. Mater., 162(1), 305, 2009
  17. Noh JS, Schwarz J, J. Colloid Interface Sci., 130, 157, 1989
  18. Tadic M, Citakovic N, Panyam M, Stojanovic Z, Markoviv D, Spasojevic V, J. Alloys Compds., 509, 7639, 2011
  19. Adegoke HI, Adekola FA, Colloid J., 74, 420, 2012
  20. Goh KH, Lim TT, Banas A, Dong ZL, J. Hazard. Mater., 179(1-3), 818, 2010
  21. Mamindy-Pajany Y, Hurel C, Marmier N, Romeo M, Desalination., 281, 93, 2011
  22. Kosmulski M, J. Colloid Interface Sci., 253(1), 77, 2002
  23. Subbaiah MV, Yuvaraya G, Vijaya Y, Krishnaiah A, J. Taiwan List. Chem. Eng., 42, 965, 2011
  24. Qin W, Yang C, Yi R, Gao G, J. Nanomaterials., DOI:10.11555/2011/159259, 2011
  25. Wang LL, Gao LA, J. Colloid Interface Sci., 349(2), 519, 2010
  26. Apte SK, Naik SD, Sonawane RS, Kale BB, J. Am. Ceram. Soc., 90(2), 412, 2007
  27. Gotic M, Music S, Popovic S, Sekovanic L, Croatica, Chem.Acta., 81, 569, 2008
  28. Ruan HD, Frost RI, Kloprogge JT, Duong L, Spectrochim.Acta Part A., 58, 967, 2000
  29. Iglesias JE, Serna CJ, Miner. Petrogr. Acta., 29A, 363, 1985
  30. Simeonidis K, Gkinis T, Tresintsi S, Martinez-Boubeta C, Vourlias G, Tsiaoussis I, Stavropoulos G, Mitrakas M, Angelakeris M, Chem. Eng. J., 168(3), 1008, 2011
  31. Hu J, Lo IMC, Chen GH, Langmuir, 21(24), 11173, 2005
  32. Fang J, Gu Z, Gang D, Liu C, Ilton ES, Deng B, Environ.Sci., 44, 4748, 2007
  33. Imai A, Gloyna EF, Water Res., 24, 1143, 1990
  34. Srinivas P, Shashikant R, Munjunatha GS, J. Environ. Sci.Health., A27, 2227, 1992
  35. Ajmal A, Khan AH, Ahmad S, Ahmad A, Water Res., 32, 3085, 1998
  36. Yu B, Zhang YH, Shukla A, Shukla SS, Dorris KL, J. Hazard.Mater., 384, 83, 2001
  37. Namasivayam C, Yamuna RT, Chemosphere., 30, 561, 1995
  38. Oliveira DQL, Goncalves M, Oliveira LCA, Guilherme LRG, J. Hazard. Mater., 151(1), 280, 2008
  39. Weng CH, Sharma YC, Chu SH, J. Hazard. Mater., 155(1-2), 65, 2008
  40. Namasivayam C, Sureshkumar MV, Bioresour. Technol., 99(7), 2218, 2008
  41. Arai Y, Elzinga EJ, Sparks DL, J. Colloid Interface Sci., 235(1), 80, 2001
  42. Ouazen N, Sahmoune MN, Int. J. Chem. Rea. Eng. Article., A151, 1, 2010
  43. Uysal M, Ar I, J. Hazard. Mater., 149(2), 482, 2007
  44. Chien SH, Clayton WR, Sci. Soc. Am. J., 44, 265, 1980
  45. Basha S, Murthy ZVP, Process Biochem., 42, 1521, 2007
  46. Temkin MI, Pyzhev V, Acta Physiochemica, USSR 12, 327, 1940
  47. Hu B, Cheng W, Zhang H, Yang S, J. Nucl. Mater., 406, 263, 2010
  48. Hsia TS, Lo SL, Lin CF, Lee DY, Colloids Surf. A., 85, 1, 1994
  49. Pakade V, Cukrowska E, Darkwa J, Torto N, Chimuka L, Water SA., 37, 529, 2011
  50. Goudarzian N, Ghahramani P, Hossini S, Polym. Int., 36, 61, 1996
  51. Miller FA, Wilkins CH, Anal. Chem., 24, 1253, 1952
  52. Strawn DG, Sparks DL, Soc. Sci. Soc. Am. J., 64, 144, 2000