Issue
Korean Journal of Chemical Engineering,
Vol.31, No.1, 50-55, 2014
Electrochemical properties related to the thickness control of the solid oxide fuel cell component layer using decalcomania paper
We fabricated anode-supported solid oxide fuel cells using decalcomania paper. To investigate the changes in thickness of the component layer and electrical properties in a unit cell, the number of layers of cathodes and the electrolyte decalcomania paper is changed. As a result, the thickness of the electrolyte and cathode layer regularly increases with an increase in the number of decalcomania papers attached. In addition, when only one electrolyte decalcomania paper is attached to an anode support, a tight and dense 8 μm electrolyte layer is obtained. A unit cell with a cathode thickness of 120 μm to which decalcomania paper is attached nine times is shown to have an open circuit voltage (OCV) of 1.08 V and a maximum power density (MPD) of 902 mW cm^(-2) at 800 ℃.
[References]
  1. Minn NQ, J. Am. Ceram. Soc., 76, 563, 1993
  2. Lu ZG, Zhou XD, Fisher D, Templeton J, Stevenson J, Wu NJ, Ignatiev A, Electrochem. Commun., 12, 179, 2010
  3. Kim SD, Hyun SH, Moon J, Kim JH, Song RH, J. Power Sources, 139(1-2), 67, 2005
  4. Steele BCH, Heinzel A, Nature., 414, 345, 2001
  5. Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y, J. Electrochem. Soc., 147(4), 1332, 2000
  6. Desouza S, Visco SJ, Dejonghe LC, Solid State Ion., 98(1-2), 57, 1997
  7. Molin S, Lewandowska-Iwaniak W, Kusz B, Gazda M, Jasinki P, J. Electroceram., 28, 80, 2012
  8. Wang CH, Worrell WL, Park S, Vohs JM, Gorte RJ, J. Electrochem. Soc., 148(8), A864, 2001
  9. Tsai TP, Perry E, Barnett S, J. Electrochem. Soc., 144(5), L130, 1997
  10. Simwonis D, Thulen H, Dias FJ, Naoumidis A, Stover D, J.Mater. Process. Technol., 92-93, 107, 1999
  11. Dillon SJ, Helmick L, Miller HM, Wilson L, Gemman R, Petrova RV, Barmak K, Rohrer GS, Salvador PA, J. Am. Ceram. Soc., 94(11), 4045, 2011
  12. Srivastava PK, Quach T, Duan YY, Donelson R, Jiang SP, Ciacchi FT, Badwal SP, Solid State Ion., 99(3-4), 311, 1997
  13. Lu Z, Hardy J, Templeton J, Stevenson J, J. Power Sources., 198, 90, 2012
  14. Vanherle J, Mcevoy AJ, Thampi KR, Electrochim. Acta, 41(9), 1447, 1996
  15. Choi JJ, Qin WT, Liu MF, Liu ML, J. Am. Ceram. Soc., 94(10), 3340, 2011
  16. Wang Z, Qian J, Cao J, Wang S, Wen T, J. Alloys Compounds., 437, 264, 2007
  17. Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D, J. Mater. Sci., 37(16), 3467, 2002
  18. Ried P, Lorenz C, Bronstrup A, Graule T, Menzler NH, Sitte W, Holtappels P, J. European Ceram. Soc., 28, 1801, 2008
  19. Zhao L, Huang X, Zhu R, Lu Z, Sun W, Zhang Y, Ge X, Liu Z, Su W, J. Phys. Chem. Solids., 69, 2019, 2008
  20. Bai Y, Liu J, Wang C, J. Hydrog. Energy., 34, 7311, 2009
  21. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ, Solid State Ion., 131(1-2), 79, 2000
  22. Kharton VV, Marques FMB, Atkinson A, Solid State Ion., 174(1-4), 135, 2004
  23. Fukui T, Ohara S, Naito M, Nogi K, J. Nano. Res., 3, 171, 2001
  24. Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216, 2005