Issue
Korean Journal of Chemical Engineering,
Vol.31, No.1, 29-36, 2014
Additive effect of Ce, Mo and K to nickel-cobalt aluminate supported solid oxide fuel cell for direct internal reforming of methane
Direct internal reforming of methane (steam/carbon=0.031, 850 ℃) is tested using button cells of Ni-YSZ/YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl2O4. The Ni-CoAl2O4 supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl2O4 support, cells with 0.5 wt% CeO2 exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K2CO3 additives, their performance is worse than that in the CeO2 case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH. and CO3 2- in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.
[References]
  1. Lee AL, Zabransky RF, Huber WJ, Ind. Eng. Chem. Res., 29, 766, 1990
  2. Gavrielatos I, Drakopoulos V, Neophytides SG, J. Catal., 259(1), 75, 2008
  3. Ormerod RM, Stud. Surf. Sci. Catal., 122, 35, 1999
  4. Triantafyllopoulos NC, Neophytides SG, J. Catal., 217(2), 324, 2003
  5. Borowiecki T, Golebiowski A, Stasinska B, Appl. Catal. A: Gen., 153(1-2), 141, 1997
  6. Finnerty CM, Coe NJ, Cunningham RH, Ormerod RM, Catal. Today, 46(2-3), 137, 1998
  7. Belyaev VD, Politova TI, Marina OA, Sobyanin VA, Appl. Catal. A: Gen., 133(1), 47, 1995
  8. Lin YB, Zhan ZL, Barnett SA, J. Power Sources, 158(2), 1313, 2006
  9. Laosiripojana N, Assabumrungrat S, Appl. Catal. B: Environ., 66(1-2), 29, 2006
  10. Kwak BH, Youn HK, Chung JS, J. Power Sources, 185(2), 633, 2008
  11. Laosiripojana N, Assabumrungrat S, Appl. Catal. B: Environ., 60(1-2), 107, 2005
  12. Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S, Fuel, 85(3), 323, 2006
  13. Laosiripojana N, Assabumrungrat S, Appl. Catal. A: Gen., 290(1-2), 200, 2005
  14. Rostrupnielsen JR, Christiansen LJ, Appl. Catal. A: Gen., 126(2), 381, 1995
  15. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 264(2), 169, 2004
  16. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 301(1), 9, 2006
  17. Graf PO, Mojet BL, Lefferts L, Appl. Catal. A: Gen., 346(1-2), 90, 2008
  18. Hardiman KM, Cooper CG, Adesina AA, Ind. Eng. Chem. Res., 43(19), 6006, 2004
  19. Opoku-Gyamfi K, Tafrechi ZM, Adesina AA, React.Kinet. Catal. Lett., 64, 229, 1998
  20. Enger BC, Lodeng R, Holmen A, Appl. Catal. A: Gen., 346(1-2), 1, 2008
  21. Al-Ubaid A, Wolf EE, Appl. Catal., 40, 73, 1998
  22. Mogensen M, Sammes NM, Tompsett GA, Solid State Ion., 129(1-4), 63, 2000
  23. Fornasiero P, Balducci G, Dimonte R, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M, J. Catal., 164(1), 173, 1996
  24. Miki T, Ogawa T, Haneda M, Kakuta N, Ueno A, Tateishi S, Matsuura S, Sato M, J. Phys. Chem., 94, 6464, 1990
  25. Lang ND, Holloway S, Norskov JK, Science., 236, 403, 1987
  26. Raz S, Sasaki K, Maier J, Riess I, Solid State Ion., 143(2), 181, 2001
  27. Mizusaki J, Tagawa H, Saito T, Yamamura T, Kamitani K, Hirano K, Ehara S, Takagi T, Hikita T, Ippommatsu M, Nakagawa S, Hashimoto K, Solid State Ionics., 70/71, 52, 1994
  28. Dicks AL, J. Power Sources., 61, 113, 1996
  29. Praliaud H, Dalmon JA, Mirodatos C, Martin GA, J. Catal., 97, 344, 1986
  30. Rostrupnielsen JR, Christiansen LJ, Appl. Catal. A: Gen., 126(2), 381, 1995