Issue
Korean Journal of Chemical Engineering,
Vol.30, No.11, 2068-2077, 2013
Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
1-Butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid (IL) is considered for CO2 capturing in a typical absorption/stripper process. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model was developed for the process based on Peng-Robinson (PR) equation of state (EoS). The model was validated with experimental data for CO2 solubility in [BMIM][BF4]. The model is utilized to study the sorbent effect and energy demand for selected operating pressure at specific CO2 capturing rates. The energy demand is expressed by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the spent solvent in the regeneration step. It is found that low recovery temperature can be achieved at specific pressure combination for the absorber/stripper units. In fact, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.
[References]
  1. Yamasaki A, J. Chem. Eng. Jpn., 36(4), 361, 2003
  2. Cohen SM, Chalmers HL, Webber ME, King CW, Environ.Res. Lett., 6, 1, 2011
  3. Tarun CB, Croiset E, Douglas PL, Gupta M, Chowdhury MHM, Int. J. Greenhouse Gas Control., 1, 55, 2007
  4. Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia., 1, 949, 2009
  5. Rodriguez N, Mussati S, Scenna N, Chem. Eng. Res. Des., 89(9A), 1763, 2011
  6. Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A, Energy, 33(8), 1311, 2008
  7. Abu-Zahra M, Schneides LH, Niederer JP, Feron H, Versteeg GF, Int. J. Greenhouse Gas Control., 1, 37, 2007
  8. Kvamsdal HM, Rochelle GT, Ind. Eng. Chem. Res., 47(3), 867, 2008
  9. Rao AB, Rubin ES, Keith DW, Morgan MG, Energy Policy, 34(18), 3765, 2006
  10. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28, 1999
  11. Huang J, Ruther T, Aust. J. Chem., 62, 298, 2006
  12. Zhang X, Dong H, Zhao Z, Zhang S, Huang Y, Energy Environ.Sci., 5, 6668, 2012
  13. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355, 2004
  14. Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 20, 2047, 2000
  15. Jacquemin J, Gomes MFC, Husson P, Majer V, J. Chem. Thermodyn., 38(4), 490, 2006
  16. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59, 1876
  17. Harvey AH, Application of molecular modeling to vapor-liquid equilibrium of water with synthesis gas, 15th Inter Conference on the Properties of Water and Steam, Berlin, Sep. 8-11, 2008
  18. Tombokan XC, Ternary phase equilibrium of the sclareol-ethyl lactate-CO2 system and its application in the extraction and isolation of sclareol from clary sage, PhD Dissertation 2008, North Carolina State University, USA.
  19. Greer T, Modeling and simulation of post combustion CO2 capturing, MSc Thesis 2008, Telemark University College, Norway
  20. Lars EO, Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant, The 48th Scandinavian Conference on Simulation and Modeling, Gøteborg, Oct. 30-31, 2007
  21. Shiflett MB, Yokozeki A, Ind. Eng. Chem. Res., 44(12), 4453, 2005
  22. Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128, 2012
  23. Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15, 2010
  24. Alvarez VH, Aznar M, J. Chin. Inst. Chem. Eng., 39(4), 353, 2008
  25. Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99, 2009
  26. Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105, 2009
  27. Valderrama JO, Reategui A, Sanga WW, Ind. Eng. Chem. Res., 47(21), 8416, 2008
  28. Mattedi S, Carvalho PJ, Coutinho JAP, Alvarez VH, Iglesias M, J. Supercrit. Fluids, 56(3), 224, 2011
  29. Valderrama JO, Urbina F, Faundez CA, J. Supercrit. Fluids., 64, 32, 2012
  30. Arce PF, Robles PA, Graber TA, Aznar M, Fluid Phase Equilib., 295(1), 9, 2010
  31. Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305, 2010
  32. Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147, 2011
  33. Hwang S, Park Y, Park K, J. Chem. Thermodyn., 43(3), 339, 2011
  34. Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109, 2003
  35. Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282, 2008
  36. Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891, 2010
  37. Fang S, Cho DW, Im T, Kim H, Fluid Phase Equilib., 299(2), 216, 2010
  38. Ren W, Scurto AM, Fluid Phase Equilib., 286(1), 1, 2009
  39. Nwosu SO, Schleicher JC, Scurto AM, J. Supercrit. Fluids, 51(1), 1, 2009
  40. Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(24), 8199, 2010
  41. Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908, 2010
  42. Bogel-Lukasik R, Matkowska D, Bogel-Lukasik E, Hofman T, Fluid Phase Equilib., 293(2), 168, 2010
  43. Sandler SL, Chemical and engineering thermodynamics, 3rd Ed. Wiley, 1999
  44. Nasri Z, Binous H, Chem. Eng. Education., 43(2), 1, 2009
  45. Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838, 2012
  46. Greer T, Bedelbayev A, Igreja J, Gomrz J, Lie B, A dynamic model for the de-absorption of carbon dioxide from monoethanolamine solution, The 49th Scandinavian Conference on Simulation and Modeling (SIMS2008), Oslo University, Oct. 7-8, 2008