Issue
Korean Journal of Chemical Engineering,
Vol.30, No.11, 2100-2107, 2013
Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium
Synthesis of Magnesium oxide (MgO) nanoparticles and zinc deposited magnesium oxide (Zn/MgO) nanoparticles was carried out using hydrothermal and deposition-precipitation method with the variation of 1-Propanol (organic solvent) concentration, sodium hydroxide and urea concentration. The nanoparticles were characterized by using FTIR, TGA, SEM-EDX, TEM and XRD. The photocatalytic efficiency of MgO and Zn/MgO nanoparticles was studied by degradation of 2,4,6-trinitrophenol (TNP), which is highly acute and toxic and causes skin and eyes diseases, liver malfunction and tumor formation. Photodegradation of TNP was carried out under UV irradiation and confirmed by using HPLC and GC-MS. MgO and Zn/MgO nanoparticles that were synthesized by using urea showed higher firstorder rate constant (k) value and percentage degradation as compared to nanoparticles that were synthesized using NaOH. It was observed that the concentration of solvent has direct relation with the k value of degradation of TNP.
[References]
  1. Mirzael H, Davoodnia A, Chin. J. Catal., 33, 1502, 2012
  2. Saxena A, Mangal L, Rai PM, Rawat AS, Kumar V, Datta M, J. Hazard. Mater., 180(1-3), 566, 2010
  3. Martin ME, Narske RM, Klabunde KJ, Micropor. Mesopor. Mater., 83, 47, 2005
  4. Narske RM, Klabunde KJ, Fultz S, Langmuir, 18(12), 4819, 2002
  5. Rajagopalan S, Koper O, Decker S, Klabunde KJ, Chemistry., 8, 2602, 2002
  6. Li YX, Koper O, Atteya M, Klabunde KJ, J. Mater. Chem., 4, 323, 1992
  7. Cooper WO, Explosives Engineering, Wiley-VCH, New York, 1996
  8. Stucki H, Chimia., 58, 409, 2004
  9. Bullock JA, Introduction to Homeland Security, Elsevier Butterworth-Heinemann, USA, 147, 2006
  10. Granqvist CG, Buhrman RA, Wyns J, Sievers AJ, Phys.Rev. Lett., 37, 625, 1976
  11. Farrukh MA, Heng BT, Adnan R, Turk. J. Chem., 34, 537, 2010
  12. Goh HS, Adnan R, Farrukh MA, Turk. J. Chem., 35, 375, 2011
  13. Yazid H, Adnan R, Hamid SA, Farrukh MA, Turk. J. Chem., 34, 639, 2010
  14. Saron KMA, Hashim MR, Farrukh MA, Appl. Surf. Sci., 258(13), 5200, 2012
  15. Adnan R, Razana NA, Rahman IA, Farrukh MA, J. Chin. Chem. Soc., 57, 222, 2010
  16. Kong M, Yang Q, Lu W, Zheyong F, Fei J, Zheng X, Wheelock TD, Chin. J. Catal., 33, 1508, 2012
  17. Kosmulski M, Chemical properties of material surface, Marcel Dekker, Inc., New York, 65, 2001
  18. Koper OB, Lagadic I, Volodin A, Klabunde KJ, Chem.Mater., 9, 2468, 1997
  19. Pei LZ, Yin WY, Wang JC, Fan CG, Zhang QF, Mater.Res., 13, 339, 2010
  20. Bang J, Yang H, Holloway PH, Nanotechnology., 17, 973, 2006
  21. Qiang XB, Hua D, Nian DY, Bin YT, T. Nonferr. Metal.Soc., 17, 671, 2007
  22. Subbaiah, S. C. Mallick, I. N. Bhattacharya, S. Anand, Das RP, The European Journal of Mineral Processing and Environmental Protection., 4, 1303, 2004
  23. Becheri A, Durr M, Nostro PL, Baglioni P, J. Nanopart. Res., 10, 679, 2008
  24. Hanawalt JD, Rinn HW, Frevel LK, Anal. Chem., 10, 475, 1938
  25. Suryanarayana C, Norton MG, X-ray diffraction: A practical approach, Springer, USA, 129, 1998
  26. Muneer I, Farrukh MA, Shagharf, Khaleeq-ur-Rahman M, Umar AA, Adnan R, Mater. Sci. Forum., 756, 197, 2013
  27. Darke FH, Pierce GW, Dow MT, Phy. Rev., 35, 613, 1930
  28. Lee JH, Je J, Hur J, Schlautman MA, Carraway ER, Analyst., 128, 1257, 2003
  29. Ashley K, Connor PEO NIOSH manual of analytical methods, Ed. 4, Method No. S228, NIOSH Publication, USA, 1994
  30. Nipper M, Qian Y, Carr RS, Miller K, Chemosphere., 56, 519, 2004