Issue
Korean Journal of Chemical Engineering,
Vol.30, No.10, 1904-1910, 2013
Surface chemistry and adsorption mechanism of cadmium ion on activated carbon derived from Garcinia mangostana shell
A detailed surface characterizations and adsorption mechanism of Cd2+ on chemical activated carbon (CAC) prepared from Garnicia mangostana shell were investigated. The activation is accomplished in self-generating atmosphere using phosphoric acid as activating agent. The characterizations performed are elemental analysis, functional group identification, N2 adsorption isotherm and surface charges. Adsorption mechanism of metal ion was tested using Cd2+ as model ion. CAC achieved BET surface area of 1,498 m2/g with a mixture of micro and mesopores. The point of zero charge is observed to be at pH 2.8 and the optimum pH for Cd2+ adsorption on CAC is 12. The adsorption isotherm followed the Freundlich model, and the adsorption kinetics was explained by pseudo-second order kinetic model. From thermodynamic studies, the adsorption was found to be physical adsorption. X-ray photoelectron spectroscopy (XPS) confirmed the adsorption of Cd2+ onto CAC as +2 oxidation state.
[References]
  1. Tan GQ, Xiao D, J. Hazard. Mater., 164(2-3), 1359, 2009
  2. Anandkumar J, Mandal B, J. Hazard. Mater., 186(2-3), 1088, 2011
  3. Sharma YC, Uma, J. Chem. Eng. Data., 55, 435, 2009
  4. Anandkumar J, Mandal B, Asia-Pac. J. Chem. Eng., 7, 928, 2012
  5. Chen YD, Huang BA, Huang MJ, Cai BG, J. Taiwan Inst.Chem. Eng., 42, 837, 2011
  6. Lo SF, Wang SY, Tsai MJ, Lin LD, Chem. Eng. Res. Des., 90(9), 1397, 2012
  7. Foo KY, Hameed BH, Chem. Eng. J., 180, 66, 2012
  8. Kang YL, Toh SKS, Monash P, Ibrahim S, Saravanan P, Asia-Pac. J. Chem. Eng., DOI:10.1002/apj.1725., 2013
  9. Zein R, Suhaili R, Earnestly F, Indrawati, Munaf E, J. Hazard. Mater., 181(1-3), 52, 2010
  10. Larkin P, IR and raman spectroscopy; principles and spectral interpretation, Elsevier, Oxford, 2011
  11. Sheng PX, Ting YP, Chen JP, Hong L, J. Colloid Interface Sci., 275(1), 131, 2004
  12. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M, Carbon., 46, 2113, 2008
  13. Foo KY, Hameed BH, Chem. Eng. J., 187, 53, 2012
  14. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603, 1985
  15. Deng H, Lu JJ, Li GX, Zhang GL, Wang XG, Chem. Eng. J., 172(1), 326, 2011
  16. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R, J. Hazard. Mater., 170(1), 357, 2009
  17. Haghseresht F, Lu GQ, Energy Fuels, 12(6), 1100, 1998
  18. Gueu S, Yao B, Adouby K, Ado G, Int. J. Environ. Sci. Technol., 4, 11, 2007
  19. Demirbas E, Dizge N, Sulak MT, Kobya M, Chem. Eng. J., 148(2-3), 480, 2009
  20. Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK, J. Hazard. Mater., 175(1-3), 311, 2010
  21. Pereira MFR, Soares SF, Orfao JJM, Figueiredo JL, Carbon., 41, 811, 2003
  22. Leon CALY, Solar JM, Calemma V, Radovic LR, Carbon., 30, 797, 1992
  23. Srivastava VC, Mall ID, Mishra IM, Chem. Eng. J., 117(1), 79, 2006
  24. Mavros P, Zouboulis AI, Lazaridis NK, Environ. Technol., 14, 83, 1993
  25. Ricou P, Lecuyer I, Le Cloirec P, Environ. Technol., 19, 1005, 1998
  26. Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I, Process Biochem., 39, 1767, 2004