Issue
Korean Journal of Chemical Engineering,
Vol.30, No.10, 1836-1842, 2013
Optimization of temperature swing strategy for selective cooling crystallization of α-form L-glutamic acid crystals
L-glutamic acid can be crystallized as metastable α-form and stable β-form crystal. The α-form is desired because of its prismatic shape. Production of α-form of L-glutamic acid by cooling crystallization is not well-defined and α-form solid is commercially not available. In this study, an optimal cooling strategy to selectively produce large and narrowly distributed α-crystals is found by modeling and optimizing the crystallization and polymorphic transformation of L-glutamic acid. The optimal temperature profile is found to be cooling-heating-cooling concept where short nucleation period is followed by growth period in metastable zone. The obtained α-form of L-glutamic acid by optimal strategy had improved mean size, distribution, and purity compared to constant cooling.
[References]
  1. Dharmayat D, Hammond RB, Lai X, Ma C, Purba E, Roberts KJ, Chen ZP, Martin E, Morris J, Bytheway R, Cryst. Growth Des., 8(7), 2205, 2008
  2. Srinivasan K, J. Cryst. Growth, 311(1), 156, 2008
  3. O’Mahony MA, Maher A, Croker DM, Rasmuson AC, Hodnett BK, Cryst. Growth Des., 12(4), 1925, 2012
  4. Sypek K, Burns IS, Florence AJ, Sefcik J, Cryst. Growth Des., 12(10), 4821, 2012
  5. De Anda JC, Wang XZ, Lai X, Roberts KJ, J. Process Control, 15(7), 785, 2005
  6. Garti N, Zour H, J. Cryst. Growth., 172, 486, 1997
  7. Kitamura M, J. Cryst. Growth., 96, 541, 1989
  8. Cashell C, Corcoran D, Hodnett BK, Chem. Commun., 3, 374, 2003
  9. Roelands CPM, ter Horst JH, Kramer HJM, Jansens PJ, AIChE J., 53(2), 354, 2007
  10. Cornel J, Lindenberg C, Mazzotti M, Cryst. Growth Des., 9(1), 243, 2009
  11. Hatakka H, Alatalo H, Louhi-Kultanen M, Lassila I, Haeggstrom E, Chem. Eng. Technol., 33(5), 751, 2010
  12. Mo YX, Dang LP, Wei HY, Fluid Phase Equilib., 300(1-2), 105, 2011
  13. De Anda JC, Wang XZ, Lai X, Roberts KJ, Jennings KH, Wilkinson MJ, Watson D, Roberts D, AIChE J., 51(5), 1406, 2005
  14. Kee NCS, Tan RBH, Braatz RD, Cryst. Growth Des., 9(7), 3044, 2009
  15. Yang DR, Lee KS, Lee JS, Kim SG, Kim DH, Bang YK, Ind. Eng. Chem. Res., 46(24), 8158, 2007
  16. Kim DY, Paul M, Repke JU, Wozny G, Yang DR, Korean J. Chem. Eng., 26(5), 1220, 2009
  17. Worlitschek J, Mazzotti M, Cryst. Growth Des., 4(5), 891, 2004
  18. Czapla F, Haida H, Elsner MP, Lorenz H, Seidel-Morgenstern A, Chem. Eng. Sci., 64(4), 753, 2009
  19. Liu JJ, Ma CY, Hu YD, Wang XZ, Chem. Eng. Res. Des., 88(4A), 437, 2010
  20. Ma CY, Wang XZ, Roberts KJ, Adv. Powder Technol., 18(6), 707, 2007
  21. Ma CY, Wang XZ, Chem. Eng. Sci., 70, 22, 2012
  22. Kumar S, Ramkrishna D, Chem. Eng. Sci., 51(8), 1333, 1996
  23. Kumar S, Ramkrishna D, Chem. Eng. Sci., 52(24), 4659, 1997
  24. Gerstlauer A, Mitrovic A, Motz S, Gilles ED, Chem. Eng. Sci., 56(7), 2553, 2001
  25. McCoy BJ, J. Colloid Interface Sci., 240(1), 139, 2001
  26. McCoy BJ, Chem. Eng. Sci., 57(12), 2279, 2002
  27. Madras G, McCoy BJ, Powder Technol., 143-144, 297, 2004
  28. Puel F, Fevotte G, Klein JP, Chem. Eng. Sci., 58(16), 3715, 2003
  29. Puel F, Fevotte G, Klein JP, Chem. Eng. Sci., 58(16), 3729, 2003
  30. Gunawan R, Fusman I, Braatz RD, AIChE J., 50(11), 2738, 2004
  31. Hu Q, Rohani S, Wang DX, Jutan A, AIChE J., 50(8), 1786, 2004
  32. Hu Q, Rohani S, Jutan A, AIChE J., 51(11), 3000, 2005
  33. Fevotte F, Fevotte G, Chem. Eng. Sci., 65(10), 3191, 2010
  34. Silva LFLR, Rodrigues RC, Mitre JF, Lage PLC, Comput. Chem. Eng., 34(3), 286, 2010
  35. Samad NAFA, Singh R, Sin G, Gernaey KV, Gani R, Comput. Chem. Eng., 35(5), 828, 2011
  36. Scholl J, Bonalumi D, Vicum L, Mazzotti M, Muller M, Cryst.Growth Des., 6(4), 881, 2006
  37. Hermanto MW, Kee NC, Tan RBH, Chiu MS, Braatz RD, AIChE J., 54(12), 3248, 2008
  38. Qamar S, Noor S, Seidel-Morgenstern A, Ind. Eng. Chem. Res., 49(10), 4940, 2010
  39. Nagy ZK, Aamir E, Rielly CD, Cryst. Growth Des., 11, 2205, 2011