Issue
Korean Journal of Chemical Engineering,
Vol.30, No.10, 1833-1835, 2013
Hydrothermal synthesis of one-dimensional tungsten oxide nanostructures using cobalt ammonium sulfate as a structure-directing agent
Hydrothermal synthesis of one-dimensional tungsten oxide nanostructures was performed using cobalt ammonium sulfate as a structure-directing agent, and the effect of the concentration of cobalt ammonium sulfate on the characteristics of the tungsten oxide nanostructures was investigated. XRD measurements showed that hexagonal tungsten oxide (h-WO3) structures were obtained at a higher concentration of cobalt ammonium sulfate (0.2 M), while cubic tungsten oxide (c-WO3) structures were obtained at a lower concentration of cobalt ammonium sulfate (0.01M). Mixed structures of h-WO3 and c-WO3 were observed at an intermediate concentration of cobalt ammonium sulfate. Morphological studies revealed that h-WO3 appeared as nanowires with a diameter of about 40 nm and an average length of 1 μm. c-WO3 was shaped in pillar-like nanorods with a diameter of about 30 nm. A red-shift in the UV/Vis absorption peak was observed with different phases of tungsten oxide nanostructures.
[References]
  1. Devan RS, Patil RA, Lin JH, Ma YR, Adv. Funct. Mater., 22(16), 3326, 2012
  2. Trapatseli M, Vernardou D, Tzanetakis P, Spanakis E, ACS Appl. Mater. Interfaces., 3, 2726, 2011
  3. Vernardou D, Drosos H, Spanakis E, Koudoumas E, Savvakisa C, Katsarakis N, J. Mater. Chem., 21, 513, 2011
  4. Zhang J, Tu JP, Xia XH, Wang XL, Gu CD, J. Mater.Chem., 21, 5492, 2011
  5. Huang J, Xu X, Gu C, Yang M, Yang M, Liu J, J. Mater.Chem., 21, 13283, 2011
  6. Horiuchi Y, Mori K, Nishiyama N, Yamashita H, Chem. Lett., 37(7), 748, 2008
  7. Wang XM, Yu CQ, Wu JX, Zhang YD, Chem. Lett., 41(6), 595, 2012
  8. Liu ZF, Yamazaki T, Shen YB, Meng D, Kikuta T, Nakatani N, Chem. Lett., 37(3), 296, 2008
  9. Govender M, Shikwambana L, Mwakikunga BW, Sideras-Haddad E, Erasmus RM, Forbes A, Nanoscale Res. Lett., 6, 166, 2011
  10. Park S, Kim H, Jin C, Lee C, Nanoscale Res. Lett., 6, 451, 2011
  11. Gu Z, Ma Y, Yang W, Zhang G, Yao J, Chem. Commun., 3597, 2005
  12. Huang K, Pan O, Yang F, Ni S, Wei X, He D, J. Phys. D-Appl.Phys., 41, 155417, 2008
  13. Gu Z, Li H, Zhai T, Yang W, Xia Y, Ma Y, Yao J, J. Solid State Chem., 180, 98, 2007
  14. Song X, Zhao Y, Zheng Y, Mater. Lett., 60, 3405, 2006
  15. Gu ZJ, Zhai TY, Gao BF, Sheng XH, Wang YB, Fu HB, Ma Y, Yao JN, J. Phys. Chem. B, 110(47), 23829, 2006
  16. Zhang J, Wang XL, Xia XH, Gu CD, Tu JP, Sol. Energy Mater. Sol. Cells, 95(8), 2107, 2011
  17. Ma D, Jiang J, Huang J, Yang D, Cai P, Zhang L, Huang S, Chem. Commun., 46, 4556, 2010
  18. Rajagopal S, Nataraj D, Mangalaraj D, Djaoued Y, Robichaud J, Khyzhun OY, Nanoscale Res. Lett., 4, 1335, 2009
  19. Shen X, Wang G, Wexler D, Sens. Actuat. B., 143, 325, 2009
  20. Subrahmanyam A, Karuppasamy A, Sol. Energy Mater. Sol. Cells, 91(4), 266, 2007