Issue
Korean Journal of Chemical Engineering,
Vol.30, No.9, 1700-1709, 2013
Evaluation of solvent dearomatization effect in heavy feedstock thermal cracking to light olefin: An optimization study
Response surface method was used to study the effect of aromatic extraction of heavy feedstock in thermal cracking. N-methylpyrrolidone as the solvent performing dearomatization of feedstock was at different temperature and molar solvent to oil ratios. Temperature, flow rate and steam-to-hydrocarbon ratio were in the range of 1,053-1,143K, 1-2 g/g, and 0.75-1.2 g/min, respectively. From the CCD studies, the effects of flow rate and coil outlet temperature were the key factors influencing the yield of light olefins. Ethylene and propylene yields increased more than 10% by dearomatization. C5 + decreased by 13% on average. Finally, we obtained the single maximum yield of ethylene, propylene, and simultaneous maximum yields for untreated and raffinate.
[References]
  1. Ren T, Patel M, Blok K, Energy, 31(4), 425, 2006
  2. Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WRW, Hassan SHA, Heng LY, Alam J, Oh SE, Appl.Energy., 1050, 2013
  3. Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Wan Daud WR, Int. J. Hydrog. Energy., 13746, 2011
  4. Greene R, PD 19 (1) Vacuum Gas Oil Cracking, 1975
  5. Suzuki T, Itoh M, Mishima M, Watanabe Y, Takegami Y, Fuel., 60, 961, 1981
  6. Van Camp CE, Van Damme PS, Froment GF, Industrial & Engineering Chemistry Process Design and Development., 23, 155, 1984
  7. Sie S, Senden M, Van Wechem H, Catal. Today., 8, 371, 1991
  8. Skraba FW, Method and apparatus for pyrolytically cracking hydrocarbons, in, Google Patents, 1992
  9. Depeyre D, Flicoteaux C, Chardaire C, Industrial & Engineering Chemistry Process Design and Development., 24, 1251, 1985
  10. Rodil R, Carro A, Lorenzo R, Torrijos RC, Anal. Chem., 77, 2259, 2005
  11. Basily IK, Shafik AL, Sarhan AA, Mohamed MB, J. Nanotechnol., DOI:10.1155/2012/439531., 2012
  12. Zou R, Lou Q, Mo S, Feng S, Ind. Eng. Chem. Res., 32, 843, 1993
  13. Liu JC, Shen BX, Wang DQ, Dong JH, J. Petroleum Sci.Eng., 66, 156, 2009
  14. Gaile A, Somov V, Zalishchevskii G, Kaifadzhyan E, Koldobskaya L, Russian Journal of Applied Chemistry., 79, 590, 2006
  15. El-Gayar MS, Gohar GA, Ibrahim AM, Ibrahim HM, Aly AM, Fuel Process. Technol., 89(3), 254, 2008
  16. Kukovecz A, Mehn D, Nemes-Nagy E, Szabo R, Kiricsi I, Carbon., 43, 2842, 2005
  17. Sedighi M, Keyvanloo K, Towfighi J, Korean J. Chem. Eng., 27(4), 1170, 2010
  18. Senol S, Measurement., 36, 131, 2004
  19. Keyvanloo K, Towfighi J, Sadrameli S, Mohamadalizadeh A, J. Anal. Appl. Pyrol., 87, 224, 2010
  20. Sedighi M, Ghasemi M, Hassan SHA, Daud WRW, Ismail M, Abdallah E, World Journal of Microbiology and Biotechnology., 1, 2012
  21. Abghari SZ, Darian JT, Karimzadeh R, Omidkhah MR, Korean J. Chem. Eng., 25(4), 681, 2008
  22. Dicholkar DD, Gaikar VG, Kumar S, Natarajan R, J. Anal.Appl. Pyrol., DOI:10.1021/ie4003238., 2013
  23. Kopinke FD, Bach G, Zimmermann G, J. Anal. Appl. Pyrol., 27, 45, 1993
  24. Kumar P, Kunzru D, Industrial & Engineering Chemistry Process Design and Development., 24, 774, 1985
  25. Akhnazarova S, Kafarov V, Chem. Chem. Eng., Moscow: MIR.Publishers, Moscow (URSS), 1982
  26. Arteaga G, Li-Chan E, Vazquez-Arteaga M, Nakai S, Trends in Food Science & Technology., 5, 243, 1994
  27. Montgomery DC, Design and analysis of experiments, John Wiley & Sons Inc., 2008