Issue
Korean Journal of Chemical Engineering,
Vol.30, No.8, 1614-1619, 2013
Optimum conditions for cultivation of Chlorella sp. FC-21 using light emitting diodes
The purpose of this study was to determine the optimum conditions for the cultivation of Chlorella sp.FC-21 under light-emitting diodes (LEDs). Specific growth rates and Chlorella cell concentrations were measured when they were grown under different LED wavelengths (red, blue, white, and mixed). The red LEDs were the most effective light source as determined by increases in specific growth rates and cell concentrations. Cell concentrations increased as light intensity was increased; however, the specific growth rate decreased as the initial cell concentration rose due to the shading effect of cells in the reactor. To determine if aeration is beneficial during cell cultivation, micro-air bubbles were aerated at 0.70 vvm in the reactor under red LED illumination. Aeration led to two- and ten-times greater specific growth rates. Our findings show that red LEDs with aeration are optimal for cultivation of Chlorella sp. FC-21.
[References]
  1. Hur S, Kim H, J. Aquaculture., 12, 135, 1998
  2. Becker E, Process Biochemistry., 8/9, 10, 1981
  3. Hartig P, Grobbelaar J, Soeder C, Groeneweg J, Biomass., 15, 211, 1988
  4. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  5. Gouveia L, Oliveira A, J. Ind. Microbiol. Biotechnol., 36, 269, 2009
  6. Flaak A, Epifanio C, Mar. Biol., 15, 157, 1978
  7. Barnwal B, Sharma M, Renew. Sust. Energ. Rev., 9, 363, 2005
  8. Figueroa F, Aguilera J, Niell F, Eur. J. Phycol., 30, 11, 1995
  9. Faust M, Sager J, Meeson B, J. Phycol., 18, 349, 1982
  10. Guillard R, Ryther D, Can. J. Microbiol., 8, 229, 1962
  11. Harimoto T, Ishizaka J, Tsuda R, J. Oceanogr., 55, 667, 1999
  12. Ichimi K, Meksumpun S, Montani S, Plankton Biol. Ecol.`, 50, 22, 2003
  13. Mata T, Martins A, Caetano N, Renew. Sust. Energ. Rev., 14, 217, 2010
  14. Chen C, Saratale G, Lee C, Chen P, Chang J, Int. J. Hydrog.Energy., 33, 6878, 2008
  15. Wang C, Fu C, Liu Y, Biochem. Eng. J., 37, 21, 2007
  16. Katsuda T, Lababpour A, Shimahara K, Katoh S, Enzyme Microb. Technol., 35(1), 81, 2004
  17. Lee CG, Palsson BO, Biotechnol. Bioeng., 44(10), 1161, 1994
  18. Liang YN, Sarkany N, Cui Y, Biotechnol. Lett., 31(7), 1043, 2009
  19. Ono E, Cuello J, Biosyst. Eng., 96, 129, 2007
  20. Scragg A, Illman A, Carden A, Shales S, Biomass Bioenergy., 23, 2002
  21. Illman A, Scragg A, Shales S, Enzyme Microb. Technol., 27, 2000
  22. Chiu S, Kao C, Chen C, Kuan T, Ong S, Lin C, Bioresour. Technol., 99, 2008
  23. Chen H, Wu J, Wang C, Fu C, Shieh C, Chen C, Wang C, Liu Y, Biochem. Engr. J., 53, 52, 2010
  24. Fu W, Gudmundsson O, Feist A, Herjolfsson G, Brynjolfsson S, J. Biotechnol., 161, 242, 2012
  25. Ral L, Kumar H, Mohn F, Soeder C, J. Microbiol. Biotechnol., 10, 119, 2000
  26. Jin E, Polle J, Lee H, Hyun S, Chang M, J. Microbiol. Biotechnol., 13, 165, 2003
  27. Lee J, Kim D, Lee J, Park S, Koh J, Ohh S, J. Microbiol. Biotechnol., 11, 772, 2001
  28. Suh I. Lee C, Biotechnol. Bioprocess Eng., 8, 313, 2003
  29. Park K, Lee C, Biotechnol. Bioprocess Eng., 5, 186, 2000
  30. Kim N, Suh I, Hur B, Lee C, J. Microbiol. Biotechnol., 12, 962, 2002
  31. Kim S, Kim G, Park D, Ryu Y, J. Microbiol. Biotechnol., 13, 175, 2003
  32. Lee J, Kwon T, Baek K, Yang J, J. Microbiol. Biotechnol., 15, 461, 2005