Issue
Korean Journal of Chemical Engineering,
Vol.30, No.8, 1544-1551, 2013
Least squares estimation of kinetic parameters in batch adsorption of phenol with confidence interval analysis
Adsorption kinetics of phenol on granular coconut shell activated carbon and granular coal based activated carbon was investigated by the model of homogeneous surface diffusion plus external film mass transfer with the stirred batch adsorber. The model was solved numerically by finite element and the parameter estimation was performed with the nonlinear least squares method. Through the confidence interval analysis and evaluation of the error sum of squares, higher precision of the parameter estimates can be obtained by combining more decay curves; the decay curves with the different initial solution concentrations and adsorbent dosages can be well represented with identical film mass transfer coefficient and surface diffusivity, and the effect of surface adsorption coverage on the surface diffusivity is negligible in the adsorption systems. The values of the film mass transfer coefficient and surface diffusivity are in the order of magnitude 10^(-5) and 10^(-12), respectively.
[References]
  1. Hung YT, Lo HH, Wang LK, Taricska JR, Li KH, Granular Activated Carbon Adsorption, in: Wang LK, Hung YT, Shammas NK (Eds.), Physiochemical treatment processes, Vol. 3, Handbook of Environmental Engineering, Humana Press Inc., Totowa, NJ, 2005
  2. Hung YT, Lo HH, Wang LK, Taricska JR, Li KH, Powdered Activated Carbon Adsorption, in: Wang LK, Hung YT, Shammas NK (Eds.), Advanced physicochemical treatment processes,Vol. 4, Handbook of Environmental Engineering, Humana Press Inc, Totowa, NJ, 2005
  3. Lin SH, Juang RS, J. Environ. Manage., 90, 1336, 2009
  4. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere., 58, 1049, 2005
  5. Cooney DO, Adsorption design for wastewater treatment, 5th Ed., CRC Press LLC, New York, 1999
  6. Do DD, Adsorption analysis: Equilibria and kinetics, 9th Ed., Imperial College Press, London, 1998
  7. Crini G, Badot PM, Prog. Polym. Sci., 33, 399, 2008
  8. Fil BA, Boncukcuoglu R, Yilmaz AE, Bayar S, Korean J. Chem. Eng., 29(9), 1232, 2012
  9. Ocampo-Perez R, Leyva-Ramos R, Mendoza-Barron J, Guerrero-Coronado RM, J. Colloid Interface Sci., 364(1), 195, 2011
  10. Ruthven DM, Principles of adsorption and adsorption processes, Wiley, New York, 1984
  11. Cotoruelo LM, Marques MD, Rodriguez-Mirasol J, Cordero T, Rodriguez JJ, Ind. Eng. Chem. Res., 46(9), 2853, 2007
  12. Yang XY, Otto SR, Al-Duri B, Chem. Eng. J., 94(3), 199, 2003
  13. Neretniekst I, Chem. Eng. Sci., 31, 465, 1976
  14. Suzuki M, Fujii T, AIChE J., 28, 380, 1982
  15. Seber GAF, Wild CJ, Nonlinear regression, Wiley, Hoboken, NJ, 2003
  16. Fujiki J, Sonetaka N, Ko KP, Furuya E, Chem. Eng. J., 160(2), 683, 2010
  17. Wakao N, Funazkri T, Chem. Eng. Sci., 33, 1375, 1978
  18. Hixson W, Baum SJ, Ind. Eng. Chem., 33, 478, 1941
  19. Abu-Eishah SI, Abu-Jabal NM, Chem. Eng. J., 81(1-3), 231, 2001
  20. Satoh K, Fan HJ, Hattori H, Tajima K, Furuya E, J. Hazard. Mater., 155(3), 397, 2008
  21. Streat M, Patrick JW, Camporro Perez, MJ, Water Res., 29, 467, 1995
  22. Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM, Colloids Surf., A 272, 89, 2006
  23. Ash R, Barrer RM, Pope CG, Proc. Roy. Soc., 271, 1, 1963
  24. Yang RT, Fenn JB, Haller GL, AIChE J., 19, 1052, 1973
  25. Ko DCK, Porter JF, McKay G, Chem. Eng. Sci., 60(20), 5472, 2005