Issue
Korean Journal of Chemical Engineering,
Vol.30, No.8, 1552-1558, 2013
Accuracy enhancement of thermal dispersion model in prediction of convective heat transfer for nanofluids considering the effects of particle migration
A thermal dispersion model is utilized for simulation of convective heat transfer of water-TiO2 nanofluid for laminar flow in circular tube. Concentration distribution at cross section of the tube was obtained considering the effects of particle migration, and this concentration distribution was applied in the numerical solution. Numerical solution was done at Reynolds numbers of 500 to 2000 and mean concentrations of 0.5 to 3%. Meanwhile, an experimental study was conducted to investigate the accuracy of the results obtained from the numerical solution. Non-uniformity of the concentration distribution increases with raising mean concentration and Reynolds number. Thereby, for mean concentration of 3%, at Reynolds numbers of 500 and 2000, the concentration from wall to center of the tube increases 2.6 and 30.9%, respectively. In the dispersion model, application of non-uniform concentration distribution improves the accuracy in prediction of the convective heat transfer coefficient in comparison with applying uniform concentration.
[References]
  1. Lee S, Choi SUS, Li S, Eastman JA, J. Heat Transf., 121, 280, 1999
  2. Das SK, Putra N, Thiesen P, Roetzel W, J. Heat Transf., 125, 567, 2003
  3. Murshed SMS, Leong KC, Yang C, Int. J. Therm. Sci., 44, 367, 2005
  4. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ, Appl.Phys. Lett., 78, 718, 2001
  5. Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966, 2008
  6. Kim S, Yoo H, Kim C, Korean J. Chem. Eng., 29(10), 1321, 2012
  7. Bianco V, Chiacchio F, Manca O, Nardini S, Appl. Therm.Eng., 29, 3632, 2009
  8. Koo J, Kleinstreuer C, Int. J. Heat Mass Transf., 48(13), 2652, 2005
  9. Mashaei PR, Hosseinalipour SM, Bahiraei M, J. Appl. Math., 2012, 259284, 2012
  10. Buongiorno J, J. Heat Transf., 128, 240, 2006
  11. Koo J, Kleinstreuer C, Int. Commun. Heat Mass Transf., 32, 1111, 2005
  12. Xue QZ, Phys. Lett. A., 307, 313, 2003
  13. Ding WL, Wen DS, Powder Technol., 149(2-3), 84, 2005
  14. Lotfi R, Saboohi Y,Rashidi AM, Int. Commun. Heat Mass Transf., 37, 74, 2010
  15. Haghshenas Fard M, Nasr Esfahany M, Talaie MR, Int. Commun. Heat Mass Transf., 37, 91, 2010
  16. Xuan YM, Roetzel W, Int. J. Heat Mass Transf., 43(19), 3701, 2000
  17. Kumar S, Kumar Prasad S, Banerjee J, Appl. Math. Model., 34, 573, 2010
  18. Heris SZ, Esfahany MN, Etemad G, Num. Heat Transf., 52, 1043, 2007
  19. Mokmeli A, Saffar-Avval M, Int. J. Therm. Sci., 49, 471, 2010
  20. Hamilton RL, Crosser OK, Ind. Eng. Chem. Fundam., 1, 187, 1962
  21. Bahiraei M, Hosseinalipour SM, Zabihi K, Taheran E, Adv.Mech. Eng., 2012, 742680, 2012
  22. Fox RW, McDonald AT, Pritchard PJ, Introduction to fluid mechanics, Wiley, New York, 2004
  23. Bejan A, Kraus AD, Heat transfer handbook, Wiley, New York, 2003
  24. Kaviany M, Principles of heat transfer in porous media, Springer, New York, 1995
  25. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR, Phys. Fluids, A Fluid Dyn., 4, 30, 1992
  26. Wen D, Ding Y, Microfluid. Nanofluid., 1, 183, 2005