Issue
Korean Journal of Chemical Engineering,
Vol.30, No.8, 1571-1577, 2013
Electrochemical performance of Ni/TiO2 hollow sphere in proton exchange membrane water electrolyzers system
This work presents the electrocatalytic evaluation of Ni/TiO2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm^(-2) peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 Acm^(-2). In the anodic polarization curves, the performance of 15 wt% Ni/TiO2 hollow sphere electrocatalyst was evaluated up to 140 mA cm^(-2) at comparatively lower over-potential value. 20 wt% Ni/TiO2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.
[References]
  1. Peavey M, Fuel from water energy independence with hydrogen, Merit Products, USA, 2003
  2. Corona-Guinto JL, Carderno-Garcia L, Martinez-Casillas DC, Sandoval-Pineda JM, Tamayo-Meza P, Silva-casarin R, Gonzalez-Huerta RG, Int. J. Hydrog. Energy., DOI:10.1016/j.ijhydene.2012.12.071, 2012
  3. Yoon YG, Park GG, Yang TH, Han JN, Lee WY, Kim CS, Int. J. Hydrog. Energy., 28, 657, 2003
  4. Radev I, Slavcheva E, Budevski E, Int. J. Hydrogen Energy., 32, 872, 2007
  5. Beer H, Improvements in or relating to electrodes for electrolytes, British Patent, 1,147,442, 1969
  6. Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Int. J. Hydrog. Energy., 35, 5558, 2010
  7. Zhang Y, Yue L, Teng K, Yuan S, Hongchao M, J. New Mat. Electrochem. Syst., 15, 271, 2012
  8. Trasatti S, Electrochim. Acta., 29, 1503, 1984
  9. Zhu YZ, Chen HB, Wang YP, Li ZH, Cao YL, Chi YB, Chem. Lett., 35(7), 756, 2006
  10. Fujiwara M, Shiokawa MK, Hayashi K, Morigaki K, Nakahara Y, J. Biomed. Mater. Res. A., 8, 103, 2007
  11. Bamwenda GR, Uesigi T, Abe Y, Sayama K, Arakawa H, Appl. Catal. A: Gen., 205(1-2), 117, 2001
  12. Chattopadhyay J, Kim HR, Moon SB, Pak D, Int. J. Hydrog.Energy., 33, 3270, 2008
  13. Son JE, Chattopadhyay J, Pak D, Int. J. Hydrog. Energy., 35, 420, 2010
  14. Chattopadhyay J, Srivastava R, Srivastava PK, J. Appl. Electrochem., 43(3), 279, 2013
  15. Shiho H, Kawahashi N, J. Colloid Interface Sci., 226(1), 91, 2000
  16. Kawahashi N, Shiho H, J. Matter. Chem., 10, 2294, 2000
  17. Yoon SB, Kim JY, Kim JH, Park SG, Kim JY, Lee CW, Yu JS, Curr. Appl. Phys., 6, 1059, 2000
  18. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S, J.Electrochem. Soc., 135, 2209, 1988
  19. Niklasson GA, Granqvist CG, J. Mater. Sci., 17, 127, 2007
  20. Lide DR, CRC handbook of chemistry and physics, 73rd Ed., CRC Press, Boca Raton, USA, 2000
  21. Lunkenheimer P, Loidl A, Ottermann CR, Bange K, Phys.Rev. B., 44, 5927, 1991
  22. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R, Electrochim. Acta, 51(15), 3161, 2006