Issue
Korean Journal of Chemical Engineering,
Vol.30, No.4, 813-822, 2013
Free convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effects
We analyzed the problem of unsteady, incompressible free convective doubly stratified flow past a semiinfinite vertical plate with the influence of electrophoresis, heat source/sink and chemical reaction. The partial differential equations governing the flow are solved by employing an implicit finite difference scheme of Crank-Nicolson type. The effect of heat generation and absorption in stratified and unstratified flow are examined and hence the influence of stratification on velocity, temperature and concentration are investigated and presented graphically. Further, the impact of the electrophoresis on particle concentration in the presence of generative and destructive reaction is analyzed. As well, the effects of the physical parameters on local and average values of skin friction, Nusselt number and Sherwood number are also investigated and illustrated graphically. The particular solutions of the present results are compared with the existing solution in literature and are found to be in good agreement.
[References]
  1. Siegel R, Trans. ASME., 80, 347, 1958
  2. Gebhart B, Pera L, Int. J. Heat Mass Transfer., 14, 2025, 1971
  3. Hellums JD, Churchill SW, AIChE J., 8, 690, 1962
  4. Callahan GD, Marner WJ, Int. J. Heat Mass Transfer., 19, 165, 1976
  5. Soundalgekar VM, Ganesan P, Int. J. Eng. Sci., 19, 757, 1981
  6. Rani HP, Kim CN, Korean J. Chem. Eng., 27(3), 759, 2010
  7. Chen CC, Eichhorn R, ASME J. Heat Transfer., 98, 446, 1976
  8. Yang KT, Novotny JL, Cheng YS, Int. J. Heat Mass Transfer., 15, 1097, 1972
  9. Jaluria Y, Himasekhar K, Comput. Fluids., 11, 39, 1983
  10. Angirasa D, Srinivasan J, ASME J. Heat Transfer., 111, 657, 1989
  11. Srinivasan J, Angirasa D, Int. J. Heat Mass Transfer., 31, 2033, 1998
  12. Saha SC, Hossain MA, Non-linear Analysis: Modelling and Control., 9, 89, 2004
  13. Rathish Kumar BV, Gupta S, J. Heat Transfer., 127, 637, 2005
  14. Srinivasacharya D, RamReddy C, Korean J. Chem. Eng., 28(9), 1824, 2011
  15. Opiolka S, Schmidt F, Fissan H, J. Aerosol Sci., 25, 665, 1994
  16. Tsai R, Chang YP, Lin TY, J. Aerosol Sci., 29(7), 811, 1998
  17. Tsai R, Huang JS, Chem. Eng. J., 157(1), 52, 2010
  18. Chambre PL, Young JD, Phys. Fluids., 1, 48, 1958
  19. Andersson HI, Hansen OR, Holmedal B, Int. J. Heat Mass Transf., 37(4), 659, 1994
  20. Muthucumaraswamy R, Ganesan P, Acta Mechanica., 147, 45, 2001
  21. Palani G, Kim KY, J. Appl. Mechanics and Technical Phys., 52, 57, 2011
  22. Vajravelu K, Rollin D, Int. J. Non-linear Mechanics., 27, 265, 1992
  23. Cheng WT, Huang CN, Chem. Eng. Sci., 59(4), 771, 2004
  24. Shanker B, Prabhakar Reddy B, Anand Rao J, Indian J. Pure Appl. Phys., 48, 157, 2010
  25. Kandasamy R, Hayat T, Obaidat S, Nuclear Eng. Design., 241, 2155, 2011
  26. Herrmann Schlichting, Boundary layer theory, Wiley, New York, 1969
  27. Carnahan B, Luther HA, Wilkes JO, Applied numerical methods, Wiley, New York, 1969
  28. Murthy PVSN, Srinivasacharya D, Krishna PVSSSR, J. Heat Transfer., 126, 297, 2004