Issue
Korean Journal of Chemical Engineering,
Vol.30, No.4, 823-830, 2013
Viscous dissipation effect on heat transfer characteristics of mixed electromagnetic/pressure driven liquid flows inside micropumps
This paper presents the effect of viscous dissipation on heat transfer characteristics of mixed electromagnetic/pressure driven liquid slip flows inside parallel plate microchannels. Flow is governed by the Navier-Stokes equations subject to the imposition of electromagnetic field with the boundary condition appropriate to the slip flow regime. For isoflux walls, some closed form expressions for the local and bulk temperature profiles and the Nusselt number in terms of dimensionless slip length, Hartmann number and Brinkman number are given, while the viscous dissipation is also taken into account. Then the analytical solutions derived in this analysis are elaborated. It turns out that since the contribution of the viscous dissipation on the Nusselt number under the given circumstances, especially a stronger electromagnetic field, may reach to nearly 10%, therefore, the viscous heating should be taken into consideration. Otherwise, the heat transfer rate may be overestimated or underestimated depending on whether the fluid is being heated or cooled. Also, there are singularities in Nusselt number values, which move close together by including the viscous dissipation. Further, an increase in the Hartmann number increases the convection, which is especially reflected in smaller values of dimensionless slip length.
[References]
  1. Bailey DK, Ameel TA, Warrington RO, Savoie TI, Proceedings of the IECEC Conference, ES-396, ASME-FL, Orlando, 1995
  2. Duncan AB, Peterson GP, Appl. Mech. Rev., 47, 397, 1994
  3. Morini GL, Int. J. Therm. Sci., 43, 631, 2004
  4. Chun MS, Lee S, Colloids Surf. A., 267, 86, 2005
  5. Joseph P,Tabeling P, Phys. Rev. E.
  6. Tretheway DC, Meinhart CD, Phys. Fluids., 14, 9, 2002
  7. El-Genk M, Yang I, J. Heat Trans.-ASME., 082405-1, 130, 2008
  8. Kavehpour HP, Faghri M, Asako Y, Numer. Heat Trans. Part A., 32, 677, 1997
  9. Ngoma GD, Erchiqui F, Int. J. Therm. Sci., 46, 1076, 2007
  10. Shams M, Shojaeian M, Aghanajafi C, Dibaji SAR, Int. Commun. Heat Mass Trans., 36, 1075, 2009
  11. Shojaeian M, Dibaji SAR, Int. Commun. Heat Mass Trans., 37, 324, 2010
  12. Xu B, Ooi KT, Mavriplis C, Zaghloul ME, J. Micromech.Microeng., 13, 53, 2003
  13. Aynur TN, Kuddusi L, Egrican N, Heat Mass Trans., 42, 1093, 2006
  14. Chen CH, Heat Mass Trans., 42, 853, 2006
  15. Hooman K, Int. Commun. Heat Mass Trans., 34, 945, 2007
  16. Koo J, Kleinstreuer C, J. Micromech. Microeng., 13, 568, 2003
  17. Koo J, Kleinstreuer C, Int. J. Heat Mass Transf., 47(14-16), 3159, 2004
  18. Rij JV, Ameel T, Harman T, Int. J. Therm. Sci., 48, 271, 2009
  19. Sadeghi A, Saidi MH, J. Heat Trans.-ASME., 132, 072401, 2010
  20. Tso CP, Mahulikar SP, Int. J. Heat Mass Transf., 41(12), 1759, 1998
  21. Alpher RA, Int. J. Heat Mass Trans., 3, 108, 1961
  22. Ghassemi M, Rezaeinezhad H, Shahidian A, Proceedings of 14th symposium on electromagnetic launch technology, June, Victoria, 1, 2008
  23. Gupta RC, Mech. Res. Commun., 19, 73, 1992
  24. Verardi SLL, Machado JM, Cardoso JR, IEEE Transaction Magnetics., 38, 941, 2002
  25. Andreev O, Kolesnikov Y, Thess A, Phys. Fluids., 18, 065108, 2006
  26. Andreev O, Kolesnikov Y, Thess A, Exp. Fluids., 46, 77, 2009
  27. Chen H, Zhoub T, Yangb Z, Lub R, Zhub Z, Ni M, Fusion Eng. Des., 85, 1742, 2010
  28. Duwairi H, Abdollah M, Microsyst. Technol., 13, 33, 2007
  29. Jang J, Lee SS, Sensor. Actuat. A., 80, 84, 2000
  30. Lemoff AV, Lee AP, Sensor. Actuat. B., 63, 178, 2000
  31. Wang PJ, Chang CY, Chang ML, Biosens. Bioelectron., 20, 115, 2004
  32. Siegel AC, Bruzewicz DA, Weibel DB, Whitesides GM, Adv. Mater., 19(5), 727, 2007
  33. Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM, Angew. Chem. Int. Ed., 45, 6877, 2006
  34. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM, Adv. Funct. Mater., 18(7), 1097, 2008
  35. Qian SZ, Bau HH, Mech. Res. Commun., 36, 382, 2009
  36. Soundalgekar VM, Proc. Natl. Inst. Sci. India Part A., 33, 276, 1967
  37. Soundalgekar VM, Proc. Natl. Inst. Sci. India Part A., 135, 251, 1969
  38. Soundalgekar VM, Proc. Natl. Inst. Sci. India Part A., 35, 439, 1969
  39. Cai C, Liu D, AIAA J., 47, 542, 2009
  40. Shojaeian M, Shojaeian M, Microfluid. Nanofluid., 12, 553, 2012
  41. Agarwal RK, Proceedings of 36th AIAA Plasmadynamics and Lasers Conference, AIAA, Toronto, 2005-4782, 2005
  42. Navier CLMH, Mem. Acad. R. Sci. Inst., France., 1, 414, 1823