Issue
Korean Journal of Chemical Engineering,
Vol.30, No.3, 761-770, 2013
CFD study of hydrodynamics behavior of a vibrating fluidized bed using kinetic-frictional stress model of granular flow
The hydrodynamics of a vertically vibrating fluidized bed was studied using an Eulerian-Eulerian twofluid model (TFM) incorporating the kinetic theory of granular flow and including the frictional stress effects. Influences of frictional stresses, vibration amplitudes and frequency on behavior of the particles were studied. In the case with vertical vibration, the numerical results showed three regions of solid concentration along the bed height: a low particle concentration region near the bottom of the bed, a high concentration region in the middle of the bed, and a transition region at top of the bed. The accuracy of results was found to be closely related to the inclusion of the frictional stresses. Ability of the two-fluid model for predicting the hydrodynamics of vibrating fluidized beds was discussed and confirmed.
[References]
  1. Geldart D, Powder Technol., 7, 285, 1973
  2. Mawatari Y, Koide T, Tatemoto Y, Takeshita T, Noda K, Adv. Powder Technol., 12(2), 157, 2001
  3. Mawatari Y, Koide T, Tatemoto Y, Uchida S, Noda K, Powder Technol., 123, 69, 2001
  4. Mori S, Yamamoto A, Iwata S, Haruta T, Yamada I, Mizutani E, AIChE Symp. Ser., In: (2nd Ed.), 86, 88, 1990
  5. Wang Y, Wang TJ, Yang Y, Jin Y, Powder Technol., 127(3), 196, 2002
  6. Luo ZF, Fan MM, Zhao YM, Tao XX, Chen QR, Chen ZQ, Powder Technol., 187(2), 119, 2008
  7. Tai SC, Hsiau SS, Powder Technol., 194(3), 159, 2009
  8. Xuejun Z, Shichao Y, Xiaoheng P, Exp. Therm. Fluid. Sci., 32, 1279, 2008
  9. Naeini SE, Spelt JK, Powder Technol., 195(2), 83, 2009
  10. Tatemoto Y, Mawatari Y, Noda K, Chem. Eng. Sci., 60(18), 5010, 2005
  11. Tatemoto Y, Mawatari Y, Yasukawa T, Noda K, Chem. Eng. Sci., 59(2), 437, 2004
  12. Mantle MD, Sederman AJ, Gladden LF, Huntley JM, Martin TW, Wildman RD, Shattuck MD, Powder Technol., 179(3), 164, 2008
  13. Xuejun Z, Shichao Y, Xiaoheng P, Exp. Therm. Fluid. Sci., 32, 1279, 2008
  14. Li X, Wang SY, Lu HL, Liu GD, Chen JH, Liu YK, Powder Technol., 197(1-2), 25, 2010
  15. Ren B, Zhong WQ, Jin BS, Yuan ZL, Lu Y, Energy Fuels, 25(9), 4095, 2011
  16. Oevermann M, Gerber S, Behrendt F, Particuology., 7, 307, 2009
  17. Zhao T, Takei M, Doh DH, Flow Meas. Instrum., 21, 212, 2010
  18. Ibsen CH, Helland E, Hjertager BH, Solberg T, Tadrist L, Occelli R, Powder Technol., 149(1), 29, 2004
  19. Deen NG, Annaland MV, Van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 62(1-2), 28, 2007
  20. Passalacqua A, Marmo L, Chem. Eng. Sci., 64(12), 2795, 2009
  21. Zhong WQ, Zhang MY, Jin BS, Yuan ZL, Powder Technol., 175(2), 90, 2007
  22. Wang XF, Jin BS, Zhong WQ, Chem. Eng. Process., 48(2), 695, 2009
  23. Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553, 2008
  24. Pei P, Zhang K, Ren J, Wen D, Wu G, Particuology., 8, 425, 2010
  25. Vun S, Naser J, Witt P, Powder Technol., 204(1), 11, 2010
  26. Lu HL, He YR, Liu WT, Ding JM, Gidaspow D, Bouillard J, Chem. Eng. Sci., 59(4), 865, 2004
  27. Shuyan W, Xiang L, Huilin L, Long Y, Dan S, Yurong H, Yonglong D, Powder Technol., 196(2), 184, 2009
  28. Patil DJ, Annaland MV, Kuipers JAM, Chem. Eng. Sci., 60(1), 57, 2005
  29. Patil DJ, Annaland AV, Kuipers JAM, Chem. Eng. Sci., 60(1), 73, 2005
  30. Hosseini SH, Ahmadi G, Rahimi R, Zivdar M, Esfahany MN, Powder Technol., 200(3), 202, 2010
  31. Hosseini SH, Zivdar M, Rahimi R, Chem. Eng. Process., 48(11-12), 1539, 2009
  32. Srivastava A, Sundaresan S, Powder Technol., 129(1-3), 72, 2003
  33. Azizi S, Hosseini SH, Moraveji M, Ahmadi G, Particuology., 8, 415, 2010
  34. Rahimi MR, Azizi S, Chem. Prod. Process Model., 6, 1, 2011
  35. Wang SY, Liu YJ, Liu YK, Wei LX, Dong Q, Wang CS, Powder Technol., 199(3), 238, 2010
  36. Ishikura T, Nagashima H, Ide M, Powder Technol., 131(1), 56, 2003
  37. Johnson PC, Nott P, Jackson R, J. Fluid Mech., 210, 501, 1990
  38. Hosseini SH, Ahmadi G, Razavi BS, Zhong WQ, Energy Fuels., 24, 6086, 2010
  39. Acosta-Iborra A, Hernandez-Jimenez F, de Vega M, Briongos JV, Chem. Eng. J., 261, 198, 2012
  40. Zhang X, Ahmadi G, J. Comput. Multiphase Flows., 4, 41, 2012
  41. Ellison J, Ahmadi G, Regel L, Wilcox W, Microgravity Sci.Tec., 8, 140, 1995
  42. Ma D, Ahmadi G, Int. J. Multiphase Flow., 16, 341, 1990
  43. Ahmadi G, Ma D, Int. J. Multiphase Flow., 16, 323, 1990
  44. Gidaspow D, Multiphase flow and fluidization, continuum and kinetic theory descriptions, Academic Press, Boston, 1994
  45. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635, 1969
  46. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449, 1986
  47. Benyahia S, Syamlal M, O’Brien TJ, “Summary of MFIX Equations 2012-1.” From URL https://mfix.netl.doe.gov/documentation/MFIXEquations2012-1.pdf, January, 2012
  48. van Wachem BGM, Schouten JC, van den Bleek CM, Krishna R, Sinclair JL, AIChE J., 47(5), 1035, 2001
  49. Boemer A, Qi H, Renz U, Int. J. Multiph. Flow, 23(5), 927, 1997
  50. Min J, Drake JB, Heindel TJ, Fox RO, AIChE J., 56, 1434, 2009
  51. Azizi S, Hosseini SH, Ahmadi G, Moraveji M, Chem. Eng. Technol., 33(3), 421, 2010
  52. Schaeffer DG, J. Diff. Equ., 66, 19, 1987
  53. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  54. Benyahia S, Ind. Eng. Chem. Res., 47(22), 8926, 2008
  55. Lettieri P, Micale G, Cammarata L, Colman D, Computational fluid-dynamics simulations of gas-fluidized beds: A preliminary investigation of different modelling approaches, In Proceedings of the 10th Germany Workshop on Two-Phase Flow Predictions, 2002
  56. Bertola F, Vanni M, Baldi G, Int. J. Chem. Reactor Eng., 1, A3, 2003
  57. Syamlal M, Rogers W, O’Brien TJ, MFIX documentation: Theory guide, Tech. Rep. DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Center, Morgantown, West Virginia, 1993
  58. Savage SB, J. Fluid Mech., 377, 1, 1998