Issue
Korean Journal of Chemical Engineering,
Vol.30, No.3, 751-760, 2013
Preparation and characterization of dimethyldichlorosilane modified SiO2/PSf nanocomposite membrane
Investigations on nanocomposite membranes imply that these hybrid materials recommend promising newgeneration membranes for gas separation in future. In this study, to investigate the effects of preparation parameters on the morphology and gas transport, various parameters including nanofiller content, surface modification and polymer concentration were considered. Two types of fumed silica nanoparticles (nonmodified and modified) were used to study the surface modification effect on agglomeration, void formation and gas separation properties of prepared membranes. Prepared nanocomposite membranes were characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and tensile strength techniques. The gas permeabilities of hydrogen, methane, and carbon dioxide through pure PSf and nanocomposites were measured as a function of silica volume fraction, and permeability coefficients were determined using a variable pressure/constant volume experimental setup. Results showed that gas permeabilities increase with silica content, and proper H2/CH4 and H2/CO2 selectivities can be achieved with modified type of silica nanoparticles due to inhibition of particle agglomeration and bonding with polymer network. Hydrogen selectivity was improved by using 15 wt% polymer content instead of 9 wt% in preparation of nanocomposite membrane with same silica content. Gas permeation results indicated that increasing of feed pressure from 3 bar to 6 bar has a positive effect on selectivity of H2/CH4 but negligible effect on that of H2/CO2 for modified silica/PSf membrane.
[References]
  1. Shao L, Lau CH, Chung TS, Int. J. Hydrog. Energy., 34, 8716, 2009
  2. Robeson LM, J. Membr. Sci., 320(1-2), 390, 2008
  3. Huang Z, Li Y, Wen R, Teoh MM, Kulprathipanja S, J. Appl. Polym. Sci., 101(6), 3800, 2006
  4. Golemme G, Bruno A, Manes R, Muoio D, Desalination, 200(1-3), 440, 2006
  5. Li D, Yong Zhu H, Ratinac KR, Ringer SP, Wang H, Micropor. Mesopor. Mater., 126, 14, 2009
  6. Kim S, Pechar TW, Marand E, Desalination, 192(1-3), 330, 2006
  7. Kim S, Chen L, Johnson JK, Marand E, J. Membr. Sci., 294(1-2), 147, 2007
  8. Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy., 34, 8707, 2009
  9. Car A, Stropnik C, Peinemann KV, Desalination, 200(1-3), 424, 2006
  10. Zhang YF, Musseman IH, Ferraris JP, Balkus KJ, J. Membr. Sci., 313(1-2), 170, 2008
  11. Yang T, Xiao Y, Chung TS, Energy Environ. Sci., 4, 4171, 2011
  12. Vijay YK, Acharya NK, Wate S, Avasthi DK, Int. J. Hydrog.Energy, 28, 1015, 2003
  13. Shao L, Chung TS, Int. J. Hydrog. Energy., 34, 6492, 2009
  14. Bhardwaj V, Macintosh A, Sharpe ID, Gordeyev SA, Shilton SJ, N. Y. Acad. Sci., 984, 1, 2003
  15. Baker RW, Membrane technology and applications, 2nd Ed., John Wiley & Sons, Ltd., New York, 2004
  16. Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym.Sci., 32, 483, 2007
  17. Brusatin G, Giustina GD, Guglielmi M, Casalboni M, Prosposito P, Schutzmann S, Roma G, Mater. Sci. Eng. C., 27, 1022, 2007
  18. Wang YW, Yen CT, Chen WC, Polymer, 46(18), 6959, 2005
  19. Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181, 2000
  20. Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123, 2008
  21. Sadeghi M, Semsarzadeh MA, Moadel H, J. Membr. Sci., 331(1-2), 21, 2009
  22. Zornoza B, Irusta S, Tellez C, Coronas J, Langmuir, 25(10), 5903, 2009
  23. Kono T, Hu YM, Masuda T, Tanaka K, Priestley RD, Freeman BD, Polym. Bull., 58(5-6), 995, 2007
  24. Gomes D, Nunes SP, Peinemann KV, J. Membr. Sci., 246(1), 13, 2005
  25. Wahab MFA, Ismail AF, Shilton SJ, Sep. Purif. Technol., 86, 41, 2012
  26. Bondi A, J. Phys. Chem., 68, 441, 1964
  27. Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ, J. Membr. Sci., 277(1-2), 195, 2006
  28. Husain S, Koros WJ, J. Membr. Sci., 288(1-2), 195, 2007
  29. Li Y, Guan HM, Chung TS, Kulprathipanja S, J. Membr. Sci., 275(1-2), 17, 2006
  30. Duval JM, Kemperman AJ, Folkers B, Mulder MH, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54(4), 409, 1994
  31. Xu Y, Li ZH, Fan WH, Wu D, Sun YH, Rong LX, Dong BZ, Appl. Surf. Sci., 225(1-4), 116, 2004
  32. Wang LJ, Lu AH, Xiao ZY, Ma JH, Li YY, Appl. Surf. Sci., 255(17), 7542, 2009
  33. Ficai D, Ficai A, Voicu G, Vasile BS, Guran C, Andronescu E, Materiale Plastice., 47, 24, 2010
  34. Elharati MA, Poly(vinyl alcohol)/polyamide thin-film composite membranes, Thesis for the degree of Master of Science in Engineering, Stellenbosch University, 2009
  35. Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F, Chem. Eng. J., 171(3), 1469, 2011
  36. Luo ML, Wen QZ, Liu JL, Liu HJ, Jia ZL, Chin. J. Chem. Eng., 19(1), 45, 2011
  37. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Ashraf Derakhshan A, J. Membr. Sci., 401, 132, 2012
  38. Yampolskii Y, Pinnau I, Freeman BD, Materials science of membranes for gas and vapor separation, John Wiley & Sons, Ltd., New York, 2006
  39. Matteucci S, Yampolskii Y, Freeman BD, Pinnau I, Transport of gases and vapors in glassy and rubbery polymers, In: Yampolskii Y, Pinnau I, Freeman BD (Eds.), Membranes for Gas and Vapor Separation, Wiley, Chichester, 6, 2006
  40. Cohen M, Turnbull T, J. Chem. Phys., 31, 1164, 1959
  41. Bondi A, Physical properties of molecular crystals, liquids and gases, John Wiley & Sons. Inc., New York, 1968
  42. Stannett VT, J. Membr. Sci., 3, 97, 1978