Issue
Korean Journal of Chemical Engineering,
Vol.30, No.3, 693-699, 2013
Structural properties of water around uncharged and charged carbon nanotubes
Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and selfdiffusion coefficient of water molecules.
[References]
  1. Iijima S, Ichihashi T, Nature., 363, 603, 1993
  2. Javey A, Guo J, Farmer DB, Wang A, Wang D, Gordon RG, Lundstrom A, Dai H, Nano Lett., 4, 447, 2004
  3. Dong L, Tao X, Zhang L, Zhang X, Nelson BJ, Nano Lett., 7, 58, 2007
  4. Zhou LG, Shi SQ, Comput. Mater. Sci., 23, 166, 2002
  5. Yao Z, Zhu C, Cheng M, Liu J, Comput. Mater. Sci., 22, 180, 2001
  6. Gu C, Gao GH, Yu YX, Mao ZQ, Int. J. Hydrog. Energy., 26, 691, 2001
  7. Gordon PA, Saeger PB, Ind. Eng. Chem. Res., 38(12), 4647, 1999
  8. Li SY, Zeng XH, Jin NQ, Zhang HY, Zhang X, Phys. Lett.A., 372, 1303, 2008
  9. Rao GP, Lu C, Su F, Sep. Purif. Technol., 58(1), 224, 2007
  10. Wang HJ, Zhou AL, Peng F, Yu H, Chen LF, Mater. Sci.Eng. A., 466, 201, 2007
  11. Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263, 2002
  12. Bahgat M, Farghali AA, El Rouby WMA, Khedr MH, J.Anal. Appl. Pyrol., 92(2), 307, 2011
  13. Martin F, Walczak R, Boiarski A, Cohen M, West T, Cosentino C, Ferrari M, J. Controlled Release., 102, 123, 2005
  14. Shokri S, Mohammadikhah R, Abolghasemi H, Mohebbi A, Hashemipour H, Ahmadi-Marvast M, JafariNejad S, Int. J.Chem. Eng. Appl., 1, 63, 2010
  15. Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P, J. Phys. Chem. B, 105(41), 9980, 2001
  16. Walther JH, Jaffe R, Kotsalis EM, Werder T, Halicioglu T, Koumoutsakos P, Carbon., 42, 1185, 2004
  17. Dujardin E, Ebbesen TW, Hiura H, Tanigaki K, Science, 265(5180), 1850, 1994
  18. Dujardin E, Ebbesen TW, Krishnan A, Treacy MMJ, Adv. Mater., 10(17), 1472, 1998
  19. Stafiej A, Pyrzynska K, Microchem. J., 89, 29, 2008
  20. Lu CY, Chiu HS, Chem. Eng. Sci., 61(4), 1138, 2006
  21. Boehm HP, Carbon., 40, 145, 2002
  22. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR, J. Chem. Phys., 81, 3684, 1984
  23. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J, Reidel Dordrecht., 331, 1981
  24. Berendsen HJC, Grigera JR, Straatsma TP, J. Phys. Chem., 91, 6269, 1987
  25. Mark P, Nilsson L, J. Phys. Chem. A, 105(43), 9954, 2001
  26. D'Angelo P, Migliorati V, Mancini G, Chillemi G, J. Phys. Chem. A, 112(46), 11833, 2008
  27. Allen MP, Tildesley DJ, Computer simulation of liquids, Clarendon Press, Oxford, Hardback, 1987
  28. Banerjee S, Murad S, Puri IK, Chem. Phys. Lett., 434(4-6), 292, 2007
  29. Ulberg DE, Gubbins KE, Mol. Phys., 84(6), 1139, 1995
  30. Marti J, J. Chem. Phys., 110(14), 6876, 1999
  31. Gordillo MC, Marti J, Chem. Phys. Lett., 341(3-4), 250, 2001
  32. Thomas JA, McGaughey AJH, J. Chem. Phys., 128, 084715, 2008
  33. Yuan QZ, Zhao YP, J. Am. Chem. Soc., 131(18), 6374, 2009
  34. Quanzi Y, Zhao Y, Phys. Rev. Lett., 104, 246101, 2010