Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 400-404, 2013
Aqueous processing of nickel spent catalyst for a value added product
Nickel was recovered from a fertilizer industry spent catalyst by leaching with nitric acid followed by nickel hydroxide precipitation. The optimization of temperature, initial acid concentration and particle size for leaching of the spent catalyst was done through 23 factorial design. A maximum extraction of 91.9% was achieved at 90 ℃, 1.5M HNO3 and 62.5 μm particle size. Temperature and acid concentration showed positive effect, while particle size showed no effect. A regression equation was developed and employed to predict conditions for 100% extraction which were experimentally tested. Nickel hydroxide was electrochemically precipitated from the leach liquor and its maximum discharge capacity was found to be 155 mAh/g. A 3-stage counter current leaching circuit was designed to obtain a leach liquor of suitable pH. XRD characterization of the precipitated Ni(OH)2 shows to consist of both α- and β-forms.
[References]
  1. Trimm DL, Appl. Catal. A: Gen., 212(1-2), 153, 2001
  2. Marafi M, Stanislaus A, Resour. Conserv. Recycl., 53(1-2), 1, 2008
  3. Abdel-aal EA, Rashad MM, Hydrometallurgy., 74, 189, 2004
  4. Al-Mansi NM, Abdel Monem NM, Waste Manage., 22(1), 85, 2002
  5. Chaudhury AJ, Donaldson JD, Boddington SC, Grimes SM, Hydrometallurgy., 34(2), 137, 1993
  6. Loboiko AY, Atroshchenko VI, Grin GI, Kutovoi VV, Fedorova NP, Volovikov AN, Alekseenko DA, Golodenko NI, Pantazev GI, Prom. Obraztsy. Tovar. Zanki., 14, 33, 1983
  7. Goel S, Pant KK, Nigam K, J. Hazard. Mater., 171(1-3), 253, 2009
  8. Marafi M, Stanislaus A, Mumford CJ, Fahim M, Appl. Catal., 47, 85, 1989
  9. Delahaye-Vidal A, Figarlz M, J. Appl. Electrochem., 10, 589, 1987
  10. Delmas C, Faure C, Borthomieu Y, Mater. Sci. Eng. B., 13, 89, 1992
  11. Subbaiah T, Mallick SC, Mishra KG, Sanjay K, Das RP, J. Power Sources, 112(2), 562, 2002
  12. Ash B, Paramguru RK, Mishra BK, Electrochem. Commun., 12, 48, 2010
  13. Abdel-Aal EA, Dietrich D, Steinhaeuser S, Wielage B, Surf.Coat. Technol., 202, 5895, 2008
  14. Abdel-Aal EA, Int. J. Nano Biomaterials., 3, 187, 2010
  15. Abdel-Aal EA, Int. J. Nanopart., 4, 77, 2011
  16. Abdel-Aal EA, Dietrich D, Steinhauser S, Lampke T, J.Electrochem. Plating Technol., 3, 29, 2011
  17. El-Shall H, Jeon JH, Abdel-Aal EA, Khan S, Gower L, Rabinovich Y, Cryst. Res. Technol., 39, 214, 2004
  18. Abdel-Aal EA, Rashad MM, El-Shall H, Cryst. Res. Technol., 39, 313, 2004
  19. Mahmoud MHH, Rashad MM, Ibrahim IA, Abdel-Aal EA, J. Colloid Interface Sci., 270(1), 99, 2004
  20. Rashad MM, Mahmoud MHH, Ibrahim IA, Abdel-Aal EA, J. Cryst. Growth, 267(1-2), 372, 2004
  21. Rashad MM, Mahmoud MHH, Ibrahim IA, Abdel-Aal EA, Cryst. Res. Technol., 40, 739, 2005
  22. El-Shall H, Rashad MM, Abdel-Aal EA, Cryst. Res. Technol., 40, 860, 2005
  23. Abdel-Aal EA, Daosukho S, El-Shall H, J. Cryst. Growth, 311(9), 2673, 2009
  24. Abdel-Aal EA, Rashad MM, Mohammed RM, Int. J.Nanopart., 3, 192, 2010
  25. Sayan E, Bayramoglu M, Hydrometallurgy., 57, 181, 2000
  26. Montgomery DC, Design and analysis of experiments, John Wiley and Sons, New Jersey, 2005
  27. Vogel AI, Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, ELBS 4th Ed., 1978
  28. Akhnazarva S, Kafarov V, Experimental Optimisation in Chemistry and Chemical Engineering, Mir, Moscow, 1982
  29. Chakkaravarthy C, Periasamy P, Jegannathan S, Vasu KI, J.Power Sources., 35, 21, 1991
  30. Barnard R, Randell CF, Tye FL, J. Appl. Electrochem., 10, 109, 1980
  31. Portemer F, Delahaye-Vidal A, Figlarz M, J. Electrochem. Soc., 139, 671, 1992