Issue
Korean Journal of Chemical Engineering,
Vol.30, No.3, 680-687, 2013
Microbial desulfurization of three different coals from Indonesia, China and Korea in varying growth medium
Shake flask studies on microbial desulfurization of three different coal samples (Indonesian lignite, Chinese lignite and Korean anthracite) were performed to optimize the best suitable growth medium. Among the three different growth mediums (basal salt medium, basal salt medium supplemented with 9 g/L Fe and basal salt medium supplemented with 2.5% S0) tested, the basal salt medium was found to be the best, considering process dynamics and economical factors. The extent of pyrite oxidation was highest with 95% in the experiments with Korean anthracite in basal salt medium supplemented with 9 g/L Fe, while the lowest pyrite oxidation of 70-71% was observed in the experiments with Indonesian and Chinese Lignite’s in only basal salt medium. The microbial sulfur removal in the experiments with basal salt medium supplemented with 9 g/L Fe for all the three coal samples was between 94-97%, while the experiments on basal salt medium supplemented with 2.5% S0 for all the coal samples were relatively much lower ranging between 27-48%. However, the overall study resulted with promising directions for further scaling up of microbial desulphurization in a best growth medium devoid of iron and sulfur supplement.
[References]
  1. Andrews GF, Maczuga J, in Proceedings of Fourth Symposium for Biotechnology in Energy Production and Conservation, Gatlinburg, TN, 26, 1982
  2. Lundgren DG, Silver M, Annu. Rev. Microbiol., 34, 263, 1980
  3. Lizama HM, Suzuki I, Biotechnol. Bioeng., 32, 110, 1987
  4. Kargi F, Robinson JM, Biotechnol. Bioeng., 27, 41, 1985
  5. Blackmore C, Blakemore B, Davies C, Res. Environ. Biotechnol., 1, 81, 1995
  6. Kargi F, Robinson JM, Appl. Environ. Microbiol., 44, 878, 1982
  7. Acharya C, Kar RN, Sukla LB, Fuel., 80, 2207, 2001
  8. Hu J, Zheng BS, Finkelman RB, Wang BB, Wang MS, Li SH, Wu DS, Fuel, 85(5-6), 679, 2006
  9. Rossi G, Fuel., 72, 1581, 1993
  10. Beier E, Res. Conserv. Rec., 1, 233, 1988
  11. Moran A, Aller A, Cara J, Martinez O, Encinas JP, Gomez E, Fuel Process. Technol., 52(1-3), 155, 1997
  12. Fabianska MJ, Lewinska-Preis L, Galimska-Stypa R, Fuel, 82(2), 165, 2003
  13. Jorjani E, Chelgani SC, Mesroghli S, Miner. Eng., 20, 1285, 2007
  14. Peeples TL, Kelly RM, Fuel., 72, 1619, 1993
  15. Tripathy SS, Kar RN, Mishra SK, Twardowska I, Sukla LB, Fuel, 77(8), 859, 1998
  16. Kim BG, Choi SK, Chung HS, Lee JJ, Saito F, Powder Technol., 126(1), 22, 2002
  17. Mankosa MJ, Adel GT, Yoon RH, Powder Technol., 49, 75, 1986
  18. Silverman MP, Lundgren DG, J. Bacteriol., 77, 642, 1959
  19. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V, BMC Genomics., 10, 394, 2009
  20. Kolthoff JM, Sandell B, Text book of quantitative inorganic chemistry, Macmillan Publishing Co., New York, 1963
  21. Gahan CS, Cunha ML, Sandstrom A, Hydrometallurgy., 95, 190, 2009
  22. Kelly DP, Phil. Trans. R. Soc. London B 13., 298, 499, 1982
  23. Hazeu W, Batenburg-van der Vegte WH, Bos P, van der Pas RK, Kuenen JG, Arch. Microbiol., 150, 574, 1988
  24. Fortuny M, Guisasola A, Casas C, Gamisans X, Lafuente J, Gabriel D, J. Chem. Technol. Biotechnol., 85(3), 378, 2010
  25. Gahan CS, Sundkvist JE, Sandstrom A, Miner. Eng., 23, 731, 2010
  26. Gahan CS, Sundkvist JE, Engstrom F, Sandstrom A, Res.Conserv. Rec., 55, 541, 2011
  27. Kim KH, Kim HY, Atmos. Environ., 36, 663, 2002
  28. Gahan CS, Sundkvist JE, Sandstrom A, J. Hazard. Mater., 172(2-3), 1273, 2009